Chemiluminescent nucleic acid detection with digoxigenin-labeled probes: A model system with probes for angiotensin converting enzyme which detect less than one attomole of target DNA

1991 ◽  
Vol 194 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Joseph J. Lanzillo
BIOspektrum ◽  
2020 ◽  
Vol 26 (6) ◽  
pp. 624-627
Author(s):  
Ole Behrmann ◽  
Iris Bachmann ◽  
Frank Hufert ◽  
Gregory Dame

Abstract The COVID-19 pandemic highlights the need for fast and simple assays for nucleic acid detection. As an isothermal alternative to RT-qPCR, we outline the development of a detection scheme for SARS-CoV-2 RNA based on reverse transcription recombinase polymerase amplification (RT-RPA) technology. RPA uses recombination proteins in combination with a DNA polymerase for rapid amplification of target DNA at a constant temperature (39–42 °C) within 10 to 20 minutes and can be monitored in real-time with fluorescent probes.


NANO ◽  
2020 ◽  
Vol 15 (08) ◽  
pp. 2050110
Author(s):  
Zhikun Zhang ◽  
Xiaojie Ye ◽  
Qingqing Liu ◽  
Cuixia Hu ◽  
Jimmy Yun ◽  
...  

Nucleic acid detection is becoming increasingly important in the diagnostics of genetic diseases for biological analysis. We herein propose gold nanoparticles as probe for colorimetric detection of nucleic acids with branched DNA nanostructures, which enables a novel and simple colorimetric biosensor. In our system, the target DNA specifically triggered two short-chain ssDNA probes to generate branched DNA nanostructures (Y-shape DNA), which prevent AuNPs from aggregation in aqueous NaCl solution. On the contrary, when the target DNA did not exist, gold nanoparticles were unstable and aggregated easily because there is no anti-aggregation function from Y-shape DNA. Sensor response was found to be proportional to the target DNA concentration from 5 to 100[Formula: see text]nM, with detection limits determined as 5[Formula: see text]nM. The developed platform is for colorimetric nucleic acid detection without enzymes, label and modification holds great promise for practical applications.


2016 ◽  
Vol 52 (74) ◽  
pp. 11108-11111 ◽  
Author(s):  
Xinya Sun ◽  
Li Wang ◽  
Mingsha Zhao ◽  
Changzhi Zhao ◽  
Shufeng Liu

An autonomous target recycling and cascade circular exponential amplification strategy was proposed for the one-pot, isothermal and ultrasensitive detection of target DNA.


Author(s):  
Long T. Nguyen ◽  
Brianna M. Smith ◽  
Piyush K. Jain

AbstractThe CRISPR/Cas12a RNA-guided complexes have a tremendous potential for nucleic acid detection due to its ability to indiscriminately cleave ssDNA once bound to a target DNA. However, the current CRISPR/Cas12a systems are limited to detecting DNA in a picomolar detection limit without an amplification step. Here, we developed a platform with engineered crRNAs and optimized conditions that enabled us to detect DNA, DNA/RNA heteroduplex and methylated DNA with higher sensitivity, achieving a limit of detection of in femtomolar range without any target pre-amplification step. By extending the 3’- or 5’-ends of the crRNA with different lengths of ssDNA, ssRNA, and phosphorothioate ssDNA, we discovered a new self-catalytic behavior and an augmented rate of LbCas12a-mediated collateral cleavage activity as high as 3.5-fold compared to the wild-type crRNA. We applied this sensitive system to detect as low as 25 fM dsDNA from the PCA3 gene, an overexpressed biomarker in prostate cancer patients, in simulated urine over 6 hours. The same platform was used to detect as low as ~700 fM cDNA from HIV, 290 fM RNA from HCV, and 370 fM cDNA from SARS-CoV-2, all within 30 minutes without a need for target amplification. With isothermal amplification of SARS-CoV-2 RNA using RT-LAMP, the modified crRNAs were incorporated in a paper-based lateral flow assay that could detect the target with up to 23-fold higher sensitivity within 40-60 minutes.


Author(s):  
Amitha Ramesh ◽  
Raksha Potdar ◽  
Rahul Bhandary

AbstractGlobal outbreak of coronavirus disease 2019 (COVID-19) in December 2019 has affected millions of people around the world. This virus binds to angiotensin-converting enzyme-2 receptors present in the pharynx, nose, oral cavity, salivary glands, tongue, etc. Saliva has been shown to have viral loads of COVID-19 as it reported to be 2019-novel-coronavirus nucleic acid positive. This article is based on the association of oral fluids and their role in diagnosis of coronavirus infection.


Sign in / Sign up

Export Citation Format

Share Document