scholarly journals Oral Fluids—A Diagnostic Tool for COVID-19: A Review

Author(s):  
Amitha Ramesh ◽  
Raksha Potdar ◽  
Rahul Bhandary

AbstractGlobal outbreak of coronavirus disease 2019 (COVID-19) in December 2019 has affected millions of people around the world. This virus binds to angiotensin-converting enzyme-2 receptors present in the pharynx, nose, oral cavity, salivary glands, tongue, etc. Saliva has been shown to have viral loads of COVID-19 as it reported to be 2019-novel-coronavirus nucleic acid positive. This article is based on the association of oral fluids and their role in diagnosis of coronavirus infection.

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Sally Badawi ◽  
Bassam R. Ali

AbstractWith the emergence of the novel coronavirus SARS-CoV-2 since December 2019, more than 65 million cases have been reported worldwide. This virus has shown high infectivity and severe symptoms in some cases, leading to over 1.5 million deaths globally. Despite the collaborative and concerted research efforts that have been made, no effective medication for COVID-19 (coronavirus disease-2019) is currently available. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) as an initial mediator for viral attachment and host cell invasion. ACE2 is widely distributed in the human tissues including the cell surface of lung cells which represent the primary site of the infection. Inhibiting or reducing cell surface availability of ACE2 represents a promising therapy for tackling COVID-19. In this context, most ACE2–based therapeutic strategies have aimed to tackle the virus through the use of angiotensin-converting enzyme (ACE) inhibitors or neutralizing the virus by exogenous administration of ACE2, which does not directly aim to reduce its membrane availability. However, through this review, we present a different perspective focusing on the subcellular localization and trafficking of ACE2. Membrane targeting of ACE2, and shedding and cellular trafficking pathways including the internalization are not well elucidated in literature. Therefore, we hereby present an overview of the fate of newly synthesized ACE2, its post translational modifications, and what is known of its trafficking pathways. In addition, we highlight the possibility that some of the identified ACE2 missense variants might affect its trafficking efficiency and localization and hence may explain some of the observed variable severity of SARS-CoV-2 infections. Moreover, an extensive understanding of these processes is necessarily required to evaluate the potential use of ACE2 as a credible therapeutic target.


TH Open ◽  
2020 ◽  
Vol 04 (02) ◽  
pp. e138-e144 ◽  
Author(s):  
Wolfgang Miesbach

AbstractThe activated renin–angiotensin system induces a prothrombotic state resulting from the imbalance between coagulation and fibrinolysis. Angiotensin II is the central effector molecule of the activated renin–angiotensin system and is degraded by the angiotensin-converting enzyme 2 to angiotensin (1–7). The novel coronavirus infection (classified as COVID-19) is caused by the new coronavirus SARS-CoV-2 and is characterized by an exaggerated inflammatory response that can lead to severe manifestations such as acute respiratory distress syndrome, sepsis, and death in a proportion of patients, mostly elderly patients with preexisting comorbidities. SARS-CoV-2 uses the angiotensin-converting enzyme 2 receptor to enter the target cells, resulting in activation of the renin–angiotensin system. After downregulating the angiotensin-converting enzyme 2, the vasoconstrictor angiotensin II is increasingly produced and its counterregulating molecules angiotensin (1–7) reduced. Angiotensin II increases thrombin formation and impairs fibrinolysis. Elevated levels were strongly associated with viral load and lung injury in patients with severe COVID-19. Therefore, the complex clinical picture of patients with severe complications of COVID-19 is triggered by the various effects of highly expressed angiotensin II on vasculopathy, coagulopathy, and inflammation. Future treatment options should focus on blocking the thrombogenic and inflammatory properties of angiotensin II in COVID-19 patients.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (08) ◽  
pp. 16-24
Author(s):  
Mohammed Oday Ezzat ◽  
Basma M. Abd Razik ◽  
Kutayba F. Dawood

The prevalence of a novel coronavirus (2019-nCoV) in the last few months represents a serious threat as a world health emergency concern. Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor for the respiratory syndrome of coronavirus epidemic in 2019 (2019-nCoV). In this work, the active site of ACE2 is successfully located by Sitmap prediction tool and validated by different marketed drugs. To design and discover new medical countermeasure drugs, we evaluate a total of 184 molecules of 7-chloro-N-methylquinolin-4-amine derivatives for binding affinity inside the crystal structure of ACE2 located active site. A novel series of N-substituted 2,5-bis[(7-chloroquinolin-4-yl)amino]pentanoic acid derivatives is generated and evaluated for a prospect as a lead compound for (2019-nCoV) medication with a docking score range of (-10.60 to -8.99) kcal/mol for the highest twenty derivatives. Moreover, the ADME pharmaceutical properties were evaluated for further proposed experimental evaluation in vitro or in vivo


2020 ◽  
Author(s):  
Christopher Whitman

Abstract Starting December 30th, 2019, a virus spread from Wuhan, in the Hubei Province of China. The virus had soon been recognized as part of the Coronavirus and temporarily named 2019 Novel Coronavirus. The dramatic increase of infections led to the death of over 400 people, by Feb 4th, 2020. By this day the virus had already crossed into 27 countries. March 11th, 2020 the World Health Organization declared the Novel Coronavirus a pandemic, pointing to over 118,000 cases of infections in over 110 countries. This public health threat drove the international community to real-time sharing of the genetic sequences isolated from the viruses. We used these freely accessible genetic data, while leveraging bioinformatic tools, with the intent to explore possible contributions to address this threat. Angiotensin-converting Enzyme 2 Inhibition has been proven to be a valuable strategy address the spread of SARS. After proving remarkable genetic similarities between SARS and the 2019 Novel Coronavirus, we computationally built the first known ex-novo model of the 2019 Novel Coronavirus Spike Glycoprotein entirely generated from its aminoacidic sequence, using I-TASEER. We then assessed the 2019 Novel Coronavirus interaction with the human Angiotensin-converting Enzyme 2. This research prompts at the potential use of Angiotensin- converting Enzyme 2 receptors blockers, as both clinical and prophylaxis measures to contain the spread of 2019 Novel Coronavirus.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hao Deng ◽  
Xue Yan ◽  
Lamei Yuan

AbstractCoronavirus disease 2019 (COVID-19) caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in considerable morbidity and mortality worldwide. COVID-19 incidence, severity, and mortality rates differ greatly between populations, genders, ABO blood groups, human leukocyte antigen (HLA) genotypes, ethnic groups, and geographic backgrounds. This highly heterogeneous SARS-CoV-2 infection is multifactorial. Host genetic factors such as variants in the angiotensin-converting enzyme gene (ACE), the angiotensin-converting enzyme 2 gene (ACE2), the transmembrane protease serine 2 gene (TMPRSS2), along with HLA genotype, and ABO blood group help to explain individual susceptibility, severity, and outcomes of COVID-19. This review is focused on COVID-19 clinical and viral characteristics, pathogenesis, and genetic findings, with particular attention on genetic diversity and variants. The human genetic basis could provide scientific bases for disease prediction and targeted therapy to address the COVID-19 scourge.


Author(s):  
Pei-Hui Wang ◽  
Yun Cheng

AbstractThe ongoing outbreak of a new coronavirus (2019-nCoV) causes an epidemic of acute respiratory syndrome in humans. 2019-nCoV rapidly spread to national regions and multiple other countries, thus, pose a serious threat to public health. Recent studies show that spike (S) proteins of 2019-nCoV and SARS-CoV may use the same host cell receptor called angiotensin-converting enzyme 2 (ACE2) for entering into host cells. The affinity between ACE2 and 2019-nCoV S is much higher than ACE2 binding to SARS-CoV S protein, explaining that why 2019-nCoV seems to be more readily transmitted from the human to human. Here, we reported that ACE2 can be significantly upregulated after infection of various viruses including SARS-CoV and MERS-CoV. Basing on findings here, we propose that coronavirus infection can positively induce its cellular entry receptor to accelerate their replication and spread, thus drugs targeting ACE2 expression may be prepared for the future emerging infectious diseases caused by this cluster of viruses.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1038
Author(s):  
Deborah Giordano ◽  
Luigi De Masi ◽  
Maria Antonia Argenio ◽  
Angelo Facchiano

An outbreak by a new severe acute respiratory syndrome betacoronavirus (SARS-CoV-2) has spread CoronaVirus Disease 2019 (COVID-19) all over the world. Immediately, following studies have confirmed the human Angiotensin-Converting Enzyme 2 (ACE2) as a cellular receptor of viral Spike-Protein (Sp) that mediates the CoV-2 invasion into the pulmonary host cells. Here, we compared the molecular interactions of the viral Sp from previous SARS-CoV-1 of 2002 and SARS-CoV-2 with the host ACE2 protein by in silico analysis of the available experimental structures of Sp-ACE2 complexes. The K417 amino acid residue, located in the region of Sp Receptor-Binding Domain (RBD) of the new coronavirus SARS-CoV-2, showed to have a key role for the binding to the ACE2 N-terminal region. The R426 residue of SARS-CoV-1 Sp-RBD also plays a key role, although by interacting with the central region of the ACE2 sequence. Therefore, our study evidenced peculiarities in the interactions of the two Sp-ACE2 complexes. Our outcomes were consistent with previously reported mutagenesis studies on SARS-CoV-1 and support the idea that a new and different RBD was acquired by SARS-CoV-2. These results have interesting implications and suggest further investigations.


Sign in / Sign up

Export Citation Format

Share Document