methylated dna
Recently Published Documents


TOTAL DOCUMENTS

531
(FIVE YEARS 117)

H-INDEX

56
(FIVE YEARS 7)

The Analyst ◽  
2022 ◽  
Author(s):  
Ji Yoon Lee ◽  
Joon Won Park

DNA methylation plays key roles in various areas, such as gene expression, regulation, epigenetics, and cancers. Since 5-methylcytosine (5mC) is commonly present in methylated DNA, characterizing the binding kinetics and...


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1544
Author(s):  
Hongqian Chu ◽  
Yongfei Hu ◽  
Bing Zhang ◽  
Zhaogang Sun ◽  
Baoli Zhu

Besides the genomic variants, epigenetic mechanisms such as DNA methylation also have an effect on drug resistance. This study aimed to investigate the methylomes of totally/extensively drug-resistant M. tuberculosis clinical isolates using the PacBio single-molecule real-time technology. The results showed they were almost the same as the pan-susceptible ones. Genetics and bioinformatics analysis confirmed three DNA methyltransferases—MamA, MamB, and HsdM. Moreover, anti-tuberculosis drug treatment did not change the methylomes. In addition, the knockout of the DNA methyltransferase hsdM gene in the extensively drug-resistant clinical isolate 11826 revealed that the motifs of GTAYN4ATC modified by HsdM were completely demethylated. Furthermore, the results of the methylated DNA target analysis found that HsdM was mainly involved in redox-related pathways, especially the prodrug isoniazid active protein KatG. HsdM also targeted three drug-targeted genes, eis, embB, and gyrA, and three drug transporters (Rv0194, Rv1410, and Rv1877), which mildly affected the drug susceptibility. The overexpression of HsdM in M. smegmatis increased the basal mutation rate. Our results suggested that DNA methyltransferase HsdM affected the drug resistance of M. tuberculosis by modulating the gene expression of redox, drug targets and transporters, and gene mutation.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Romy A. M. Klein Kranenbarg ◽  
Abdul Hussain Vali ◽  
Jan N. M. IJzermans ◽  
Thomas R. Pisanic ◽  
Tza-Huei Wang ◽  
...  

Abstract Background Colon cancer (CC) is treatable if detected in its early stages. Improved CC detection assays that are highly sensitive, specific, and available at point of care are needed. In this study, we systematically selected and tested methylated markers that demonstrate high sensitivity and specificity for detection of CC in tissue and circulating cell-free DNA. Methods Hierarchical analysis of 22 candidate CpG loci was conducted using The Cancer Genome Atlas (TCGA) COAD 450K HumanMethylation database. Methylation of 13 loci was analyzed using quantitative multiplex methylation-specific PCR (QM-MSP) in a training set of fresh frozen colon tissues (N = 53). Hypermethylated markers were identified that were highest in cancer and lowest in normal colon tissue using the 75th percentile in Mann–Whitney analyses and the receiver operating characteristic (ROC) statistic. The cumulative methylation status of the marker panel was assayed in an independent test set of fresh frozen colon tissues (N = 52) using conditions defined and locked in the training set. A minimal marker panel of 6 genes was defined based on ROC area under the curve (AUC). Plasma samples (N = 20 colorectal cancers, stage IV and N = 20 normal) were tested by cMethDNA assay to evaluate marker performance in liquid biopsy. Results In the test set of samples, compared to normal tissue, a 6-gene panel showed 100% sensitivity and 90% specificity for detection of CC, and an AUC of 1.00 (95% CI 1.00, 1.00). In stage IV colorectal cancer plasma versus normal, an 8-gene panel showed 95% sensitivity, 100% specificity, and an AUC of 0.996 (95% CI 0.986, 1.00) while a 5-gene subset showed 100% sensitivity, 100% specificity, and an AUC of 1.00 (95% CI 1.00, 1.00), highly concordant with our observations in tissue. Conclusions We identified high performance methylated DNA marker panels for detection of CC. This knowledge has set the stage for development and implementation of novel, automated, self-contained CC detection assays in tissue and blood which can expeditiously and accurately detect colon cancer in both developed and underdeveloped regions of the world, enabling optimal use of limited resources in low- and middle-income countries.


2021 ◽  
pp. 167404
Author(s):  
Zhibin Wu ◽  
Sizhuo Chen ◽  
Mengqi Zhou ◽  
Lingbo Jia ◽  
Zhenhua Li ◽  
...  

2021 ◽  
Author(s):  
Cristina A. Matzenbacher ◽  
Juliana Silva ◽  
Ana Leticia H. Garcia ◽  
Rafael Kretschmer ◽  
Mónica Cappetta ◽  
...  

Abstract The genus Ctenomys has been widely used in karyotype evolution studies due to the variation in their diploid numbers (2n), which range from 2n = 10 to 2n = 70. Ctenomys minutus is characterized by intraspecific variation in diploid number (2n = 42, 46, 48, and 50), which makes it an interesting model to investigate the genomic instability mechanisms that have led to different cytotypes in this species. We aimed to contribute to the knowledge about telomeres’ role in chromosomal instability and global DNA methylation in the genome evolution of C. minutus. This study found that telomere length differs between cytotypes, but only for females (50a<46a,48a,42), although methylation was also higher, no significant difference was shown. It was also shown that young individuals, regardless of cytotype, had the longest telomere and the most methylated DNA, although only the last was statistically significant. Despite this, there is still much to be answered, although new cytotypes seem to have emerged within the distribution of parental cytotypes by the accumulation of different chromosomal rearrangements.


2021 ◽  
Author(s):  
Isioma Enwerem-Lackland ◽  
Eric Warga ◽  
Margaret Dugoni ◽  
Jacob Elmer ◽  
Karmella A. Haynes

Purpose: Targeted regulation of transfected extra-chromosomal plasmid DNA typically requires the integration of 9 - 20 bp docking sites into the plasmid. Here, we report an elegant approach, The Dpn Adaptor Linked Effector (DAL-E) system, to target fusion proteins to 6-methyladenosine in GATC, which appears frequently in popular eukaryotic expression vectors and is absent from endogenous genomic DNA. Methods: The DNA-binding region from the DpnI endonuclease binds 6-methyladenosine within the GATC motif. We used a Dpn-transcriptional activator (DPN7-TA) fusion to induce gene expression from transiently transfected pDNAs. Results: We validated methylation-dependent activity of DPN7-TA with a panel of target pDNAs. We observed stronger transactivation when GATC targets were located upstream of the transcriptional start site in the target pDNA. Conclusion: DAL-E, consisting of a 108 aa, 12 kD DNA-binding adaptor and a 4 bp recognition site, offers a genetically-tractable, tunable system that can potentially be redesigned to recruit a variety of regulators (e.g. activators, silencers, epigenome editors) to transfected plasmid DNA.


2021 ◽  
Author(s):  
Louise Faaborg ◽  
Anders Jakobsen ◽  
Marianne Waldstrøm ◽  
Christina B Petersen ◽  
Rikke F Andersen ◽  
...  

Aim: In ovarian cancer, methylated HOXA9 (meth-HOXA9) has been proposed as a relevant biomarker, however, its role in the carcinogenic development remains unknown. This study aimed at evaluating meth-HOXA9 as a diagnostic biomarker in ovarian cancer. Materials & methods: The meth-HOXA9 status was examined in 138 tissue specimens encompassing normal ovaries, benign- and borderline tumors, and ovarian cancer using droplet digital PCR. Results: Meth-HOXA9 was detected in 93% (82/88) and 88% (14/16) of ovarian cancer and borderline tumors, respectively. In patients with benign ovarian tumors meth-HOXA9 was detected in 17% (3/18). Using receiver operating characteristic (ROC) analysis meth-HOXA9 had a diagnostic accuracy of 98%. Conclusion: Meth-HOXA9 is highly cancer specific and could serve as a general diagnostic marker of ovarian malignancy.


Sign in / Sign up

Export Citation Format

Share Document