NADH oxidase system of Agrobacterium tumefaciens

1966 ◽  
Vol 113 (3) ◽  
pp. 548-553 ◽  
Author(s):  
C.K.Ramakrishna Kurup ◽  
C.S. Vaidyanathan ◽  
T. Ramasarma
1985 ◽  
Vol 229 (3) ◽  
pp. 621-629 ◽  
Author(s):  
B M Jørgensen ◽  
H N Rasmussen ◽  
U F Rasmussen

Intact pigeon heart mitochondria showed 10-30% ubiquinone reduction in the absence of substrates. This reduction could not be ascribed to endogenous substrates, as judged by lack of effect of inhibitors and uncouplers and by the very low endogenous respiratory rate. Addition of NADH in the presence of antimycin caused further reduction of about 10% ubiquinone, apparently coupled to the rotenone- and antimycin-sensitive exo-NADH oxidase system [Rasmussen (1969) FEBS Lett. 2, 157-162]. Citric acid cycle substrates reduced most of the remaining ubiquinone in the presence of antimycin; 15-20% of the total ubiquinone content was still in the oxidized form under the most reducing conditions. Three pools of ubiquinone therefore appeared to be present in heart mitochondria: a metabolically inactive pool consisting of reduced as well as oxidized ubiquinone, a pool coupled to oxidation of added (cytoplasmic) NADH, and the well-known pool coupled to citric acid cycle oxidations. Ferricyanide selectively oxidized the ubiquinol reduced by added NADH, indicating that this pool is situated on the outer surface of the mitochondrial inner membrane. Ubiquinone reduction levels were determined with a new method, which is described in detail.


Author(s):  
Mafalda Dias Gomes ◽  
Bettina R. Bommarius ◽  
Shelby R. Anderson ◽  
Brent D. Feske ◽  
John M. Woodley ◽  
...  

1973 ◽  
Vol 26 (2) ◽  
pp. 453 ◽  
Author(s):  
AG Shanahan ◽  
JE O'hagan

The enzymatic activities of the succinate-<;ytochrome c reductase system, the NADH--cytochrome c reductase system, the NADH oxidase system, and cytochrome c oxidase were determined spectrophotometrically in particulate preparations of eggs and larvae of B. micro plus.


1980 ◽  
Vol 26 (4) ◽  
pp. 496-502 ◽  
Author(s):  
M. Sadler ◽  
M. McAninch ◽  
R. Alico ◽  
L. I. Hochstein

The intracellular concentrations of Na+ and K+ in exponentially growing Paracoccus halodenitrificans were independent of the NaCl concentration of the growth medium. The observed values were approximately 100 and 300 mM for Na+ and K+, respectively. In stationary phase cells, the ultimate values for Na+ depended on the NaCl concentration of the growth medium. With cells grown in the presence of 1 M NaCl, the value was about 500 mM; for cells grown in the presence of 3 M NaCl, the value was about 1.1 M. The K+ concentration in stationary phase cells was unaffected by the NaCl concentration in the growth medium. The final value was about 100 mM. Associated with these changes were changes in the ATP pool and decreases in the activities of the NADH oxidase system and the membrane-bound ATPase. It is proposed that the decrease in the activities of these enzymes may account for the ion flows observed in stationary phase cells.


1985 ◽  
Vol 229 (3) ◽  
pp. 631-641 ◽  
Author(s):  
U F Rasmussen ◽  
H N Rasmussen

An exo-NADH oxidase system [NADH oxidase system (external)], effecting intact-mitochondrial oxidation of added NADH, was studied in pigeon heart mitochondria. Breast muscle mitochondria showed an equal specific activity of the system. The exo-NADH oxidase activity (200 micron mol of NADH/min per g of protein) equalled two-thirds of the State-3 respiratory activity with malate + pyruvate or one-seventh of the total NADH oxidase activity of heart mitochondria. The activity was not caused by use of proteinase in the preparation procedure and all measured parameters were very reproducible from preparation to preparation. The activity is therefore most likely not due to preparation artefacts. The exo-NADH oxidase system is present in all mitochondria in the preparation and is not confined to a subpopulation. The system reduced all cytochrome anaerobically and direct interaction with all cytochrome oxidase was demonstrated by interdependent cyanide inhibition. The exo-NADH oxidase system seems to be located at the outer surface of the mitochondrial inner membrane because, for instance, only this system was rapidly inhibited by rotenone, and ferricyanide could act as acceptor in the rotenone-inhibited system (reductase activity = 20 times oxidase activity). In the presence of antimycin, added NADH reduced only a part of the b-cytochromes. Freezing and thawing the mitochondria, one of the methods used for making them permeable to NADH, destroyed this functional compartmentation. The characteristics of the exo-NADH oxidase system and the malate-aspartate shuttle are compared and the evidence for the shuttle's function in heart in vivo is re-evaluated. It is proposed that oxidation of cytoplasmic NADH in red muscles primarily is effected by the exo-NADH oxidase system.


2000 ◽  
Vol 108 (4) ◽  
pp. 413-419
Author(s):  
Patricia Dupré ◽  
Jerôme Lacoux ◽  
Godfrey Neutelings ◽  
Dominique Mattar-Laurain ◽  
Marc-André Fliniaux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document