Effects of dextranases on cell adherence, glucan-film formation and glucan synthesis by Streptococcus mutans glucosyltransferase

1979 ◽  
Vol 24 (3) ◽  
pp. 191-198 ◽  
Author(s):  
T. Koga ◽  
M. Inoue
2010 ◽  
Vol 192 (12) ◽  
pp. 3024-3032 ◽  
Author(s):  
H. Koo ◽  
J. Xiao ◽  
M. I. Klein ◽  
J. G. Jeon

ABSTRACT Streptococcus mutans is a key contributor to the formation of the extracellular polysaccharide (EPS) matrix in dental biofilms. The exopolysaccharides, which are mostly glucans synthesized by streptococcal glucosyltransferases (Gtfs), provide binding sites that promote accumulation of microorganisms on the tooth surface and further establishment of pathogenic biofilms. This study explored (i) the role of S. mutans Gtfs in the development of the EPS matrix and microcolonies in biofilms, (ii) the influence of exopolysaccharides on formation of microcolonies, and (iii) establishment of S. mutans in a multispecies biofilm in vitro using a novel fluorescence labeling technique. Our data show that the ability of S. mutans strains defective in the gtfB gene or the gtfB and gtfC genes to form microcolonies on saliva-coated hydroxyapatite surfaces was markedly disrupted. However, deletion of both gtfB (associated with insoluble glucan synthesis) and gtfC (associated with insoluble and soluble glucan synthesis) is required for the maximum reduction in EPS matrix and biofilm formation. S. mutans grown with sucrose in the presence of Streptococcus oralis and Actinomyces naeslundii steadily formed exopolysaccharides, which allowed the initial clustering of bacterial cells and further development into highly structured microcolonies. Concomitantly, S. mutans became the major species in the mature biofilm. Neither the EPS matrix nor microcolonies were formed in the presence of glucose in the multispecies biofilm. Our data show that GtfB and GtfC are essential for establishment of the EPS matrix, but GtfB appears to be responsible for formation of microcolonies by S. mutans; these Gtf-mediated processes may enhance the competitiveness of S. mutans in the multispecies environment in biofilms on tooth surfaces.


1999 ◽  
Vol 67 (5) ◽  
pp. 2638-2642 ◽  
Author(s):  
Daniel J. Smith ◽  
Rhonda L. Heschel ◽  
William F. King ◽  
Martin A. Taubman

ABSTRACT We examined the immunogenicity and induction of inhibitory activity of 19-mer synthetic peptides which contained putative catalytic regions that were associated with the β5 (EAW) and β7 (HDS) strand elements of the suggested (β,α)8 catalytic barrel domain of Streptococcus mutans glucosyltransferase (GTF). Both peptides readily induced serum immunoglobulin G (IgG) and salivary IgA antipeptide activity which was reactive both with the inciting peptide and with intactS. mutans GTF. Antisera to each peptide construct also inhibited the ability of S. mutans GTF to synthesize glucan. These observations support the existence of catalytic subdomains containing glutamate and tryptophan (EAW) or aspartate and histidine (HDS) residues, each of which have been suggested to be involved with the catalytic activity of GTF. Furthermore, the epitopes defined in these sequences have significant immunogenicity and can induce immune responses which interfere with GTF-mediated glucan synthesis.


1977 ◽  
Vol 16 (2) ◽  
pp. 637-648 ◽  
Author(s):  
Greg R. Germaine ◽  
Susan K. Harlander ◽  
Woon-Lam S. Leung ◽  
Charles F. Schachtele

2016 ◽  
Vol 10 (1) ◽  
pp. 360-366 ◽  
Author(s):  
Kazuo Yamakami ◽  
Hideaki Tsumori ◽  
Yoshitaka Shimizu ◽  
Yutaka Sakurai ◽  
Kohei Nagatoshi ◽  
...  

An oral infectious disease, dental caries, is caused by the cariogenic streptococci Streptococcus mutans. The expected preventive efficiency for prophylactics against dental caries is not yet completely observed. Nisin, a bacteriocin, has been demonstrated to be microbicidal against S. mutans, and liposome-encapsulated nisin improves preventive features that may be exploited for human oral health. Here we examined the bactericidal effect of charged lipids on nisin-loaded liposomes against S. mutans and inhibitory efficiency for insoluble glucan synthesis by the streptococci for prevention of dental caries. Cationic liposome, nisin-loaded dipalmitoylphosphatidylcholine/phytosphingosine, exhibited higher bactericidal activities than those of electroneutral liposome and anionic liposome. Bactericidal efficiency of the cationic liposome revealed that the vesicles exhibited sustained inhibition of glucan synthesis and the lowest rate of release of nisin from the vesicles. The optimizing ability of cationic liposome-encapsulated nisin that exploit the sustained preventive features of an anti-streptococcal strategy may improve prevention of dental caries.


Sign in / Sign up

Export Citation Format

Share Document