Chemical composition of rainfall and wet deposition over northern Britain

1984 ◽  
Vol 18 (9) ◽  
pp. 1921-1932 ◽  
Author(s):  
J.N. Cape ◽  
D. Fowler ◽  
J.W. Kinnaird ◽  
I.S. Paterson ◽  
I.D. Leith ◽  
...  
2021 ◽  
Author(s):  
Barbara Sensuła ◽  
Nathalie Fagel

<p>Trees can provide annual records of ecosystem changes connected with human activity over several decades. These changes can be recorded in the pattern of variation of tree-rings widths and in the variation in the elemental composition of wood. Analysis of trace metal pollution is based on the assumption that element concentrations in tree foliage and tree rings represent element availability in the environment.</p><p>We determined the chemical composition of pine needles and annual tree rings to monitor environmental contamination in an urban forest environment in the most industrialized part of southern Poland.</p><p>The concentrations of trace elements (Cr, Co, Ni, Cu, Zn, Pb) and the Pb isotope composition were measured in needles from Pinus sylvestris L. growing in nine urban forests near five factories. Trace elemental concentration and Pb isotope ratio were determined by ICP-MS and MC-ICP-MS, respectively. The needles were characterized based on the concentrations of Cr, ranging from 0.05 to 0.7 mg/kg, Co, from 0.005 to 0.075 mg/kg, Ni, from 0.12 to 0.66 mg/kg, Cu, from 0.49 to 1.0 mg/kg, Zn, from 3.9 to 14 mg/kg, and Pb, from 0.06 to 0.53 mg/kg. The <sup>208</sup>Pb/<sup>206</sup>Pb ratio ranged from 2.08 to 2.11 and the <sup>206</sup>Pb/<sup>207</sup>Pb ratio between 1.15 and 1.17. The heterogeneity of Pb isotope ratio indicates that there are different sources affecting the Pb isotopic composition of pine needles (Sensuła et al., 2021).</p><p>In one of the investigated site, a radial trace-element profiles were determined by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (Laser ablation: New Wave Research UP-193 FX Fast Excimer, ICP-MS: Thermo Scientific X-Series2 with CCT -Collision Cell Technology) at Royal Museum for Central Africa (Belgium). LA-ICP-MS provides a repeatable, minimally destructive, sensitive method for determining many elements in wood tissue, with relatively high spatial resolution.Temporal variations of element concentration (median) in annual tree-rings of pines were compared with time series of wet deposition of pollutant and air pollutant concentration in the investigated area. The similar trends of magnitudes changes can be observed between analysed elements concentration (Na, Mg, Fe, Ni, Zn) and total wet deposition of these elements in the environment during vegetation period or these elements concentration in the rain (Sensuła et al. 2017). </p><p>Different space-time patterns of element accumulation in pine needles and annaul tree rings were observed. The variation in isotopic composition reflects a mix between different anthropogenic sources.</p><p> </p><p>References:</p><p>Sensuła, B., Wilczyński, S., Monin, L., Allan, M., Pazdur, A., & Fagel, N. (2017). Variations of tree ring width and chemical composition of wood of pine growing in the area nearby chemical factories, Geochronometria, 44(1), 226-239. doi: https://doi.org/10.1515/geochr-2015-0064</p><p>Sensuła, B., Fagel, N., & Michczyński, A. (2021). Radiocarbon, trace elements and pb isotope composition of pine needles from a highly industrialized region in southern Poland. Radiocarbon, 1-14. doi:10.1017/RDC.2020.132</p>


2008 ◽  
Vol 80 (2) ◽  
pp. 381-395 ◽  
Author(s):  
Elba C. Teixeira ◽  
Daniela Migliavacca ◽  
Sadi Pereira Filho ◽  
Andréa C.M. Machado ◽  
Juliana B. Dallarosa

The purpose of this study is to analyze the chemical composition of wet precipitation in samples collected at three stations in the Candiota region in the Brazilian state of Rio Grande do Sul (RS). Samples were collected in 2004. Variables analyzed in wet precipitation were pH, conductivity, and concentration of Cl-, NO3-, SO4(2-) F-, Na+, Ca2+, Mg2+, K+, NH4+, Cu, Zn, Fe, Mn, Pb, Ni, Cd, Co, and Cr. SO2 and NO2 distribution over the time were also evaluated. Results have showed that pH < 5.6 are found mostly at Candiota airport (85%), followed by Aceguá (72%) and Três Lagoas (65%). Enrichment Factor of the studied ions in wet deposition revealed higher Ca2+ and SO4(2-) enrichment in Três Lagoas. Factor Analysis applied to metals and major ions allowed identifying the major sources. While Cl-, Na+, Mg2+ are of marine origin, SO4(2-), NO3-, NH4+ ,F- come from anthropogenic sources. Except for Fe and Mn originating from the soil dust, the metals studied showed to have anthropogenic influence The average SO2 and NO2 concentration, as well as SO4(2-) and NO3- in wet precipitation in the Candiota region showed higher concentrations during the warmer months.


2013 ◽  
Vol 13 (5) ◽  
pp. 2321-2330 ◽  
Author(s):  
K. M. Mullaugh ◽  
J. D. Willey ◽  
R. J. Kieber ◽  
R. N. Mead ◽  

Abstract. Sequential sampling of rainwater from Hurricane Irene was carried out in Wilmington, NC, USA on 26 and 27 August 2011. Eleven samples were analyzed for pH, major ions (Cl−, NO3−, SO42−, Na+, K+, Mg2+, Ca2+, NH4+), dissolved organic carbon (DOC) and hydrogen peroxide (H2O2). Hurricane Irene contributed 16% of the total rainwater and 18% of the total chloride wet deposition received in Wilmington NC during all of 2011. This work highlights the main physical factors influencing the chemical composition of tropical storm rainwater: wind speed, wind direction, back trajectory and vertical mixing, time of day and total rain volume. Samples collected early in the storm, when winds blew out of the east, contained dissolved components indicative of marine sources (salts from sea spray and low DOC). The sea-salt components in the samples had two maxima in concentration during the storm the first of which occurred before the volume of rain had sufficiently washed out sea salt from the atmosphere and the second when back trajectories showed large volumes of marine surface air were lifted. As the storm progressed and winds shifted to a westerly direction, the chemical composition of the rainwater became characteristic of terrestrial storms (high DOC and NH4+ and low sea salt). This work demonstrates that tropical storms are not only responsible for significant wet deposition of marine components to land, but terrestrial components can also become entrained in rainwater, which can then be delivered to coastal waters via wet deposition. This study also underscores why analysis of one composite sample can lead to an incomplete interpretation of the factors that influence the chemically divergent analytes in rainwater during extreme weather events.


2010 ◽  
Vol 10 (9) ◽  
pp. 21989-22018 ◽  
Author(s):  
M. Werner ◽  
M. Kryza ◽  
A. J. Dore ◽  
M. Błaś ◽  
S. Hallsworth ◽  
...  

Abstract. Base cations exerts a large impact on various geochemical and geophysical processes both in the atmosphere and at the Earth surface. One of the essential roles of these compounds is impact on surface pH causing an increase in alkalinity and neutralizing the effects of acidity generated by sulphur and nitrogen deposition. During recent years anthropogenic emissions of base cations in the UK have decreased substantially, by about 70% for Na+, 78% for Mg2+, 75% for Ca2+ and about 48% for K+ for the period 1990–2006. For the island regions, such as the is UK, the main source of base cation particles is the aerosol produced from the sea surface. Here, the sea salt aerosol (SSA) emissions are calculated with parameterisations proposed by Maårtensson et al. (2003); ultra fine particles, Monahan et al. (1986); fine particles and Smith and Harisson (1998); coarse particles continuously with a 0.1 μ m size step using WRF-modelled wind speed data at a 5 km × 5 km grid square resolution with a 3 h time step for two selected years 2003 and 2006. SSA production has been converted into base cation emissions, with the assumption that the chemical composition of the particle emitted from the sea surface is equal to the chemical composition of sea water, and used as input data in the Fine Resolution Atmospheric Multi-pollutant Exchange Model (FRAME). FRAME model results, yearly mean concentrations and total wet deposition at a 5 km × 5 km grid resolution, are compared with concentrations in air and wet deposition from the National Monitoring Network and measurements based estimates of UK deposition budget. The correlation coefficient for wet deposition achieves high values for Na+ and Mg2+, and for Ca2+ there is significant scattering. Base cation concentration is also represented well, with some overestimations on the west coast and underestimations in the centre of the land.


Sign in / Sign up

Export Citation Format

Share Document