Resampling and extreme value statistics in air quality model performance evaluation

1985 ◽  
Vol 19 (9) ◽  
pp. 1503-1518 ◽  
Author(s):  
S.T. Rao ◽  
G. Sistla ◽  
V. Pagnotti ◽  
W.B. Petersen ◽  
J.S. Irwin ◽  
...  
2017 ◽  
Author(s):  
Jianlin Hu ◽  
Xun Li ◽  
Lin Huang ◽  
Qi Ying ◽  
Qiang Zhang ◽  
...  

Abstract. Accurate exposure estimates are required for health effects analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used tools to provide detailed information of spatial distribution, chemical composition, particle size fractions, and source origins of pollutants. The accuracy of CTMs' predictions in China is largely affected by the uncertainties of public available emission inventories. The Community Multi-scale Air Quality model (CMAQ) with meteorological inputs from the Weather Research and Forecasting model (WRF) were used in this study to simulate air quality in China in 2013. Four sets of simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 with the four inventories generally meet the criteria of model performance, but difference exists in different pollutants and different regions among the inventories. Ensemble predictions were calculated by linearly combining the results from different inventories under the constraint that sum of the squared errors between the ensemble results and the observations from all the cities was minimized. The ensemble annual concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFE) of the ensemble predicted annual PM2.5 at the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25–−0.16) and MFE (0.26–0.31) of individual simulations. The ensemble annual 1-hour peak O3 (O3-1 h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1 h. The study demonstrates that ensemble predictions by combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories and the results are publicly available for future health effects studies.


2016 ◽  
Vol 16 (16) ◽  
pp. 10313-10332 ◽  
Author(s):  
Giancarlo Ciarelli ◽  
Sebnem Aksoyoglu ◽  
Monica Crippa ◽  
Jose-Luis Jimenez ◽  
Eriko Nemitz ◽  
...  

Abstract. Four periods of EMEP (European Monitoring and Evaluation Programme) intensive measurement campaigns (June 2006, January 2007, September–October 2008 and February–March 2009) were modelled using the regional air quality model CAMx with VBS (volatility basis set) approach for the first time in Europe within the framework of the EURODELTA-III model intercomparison exercise. More detailed analysis and sensitivity tests were performed for the period of February–March 2009 and June 2006 to investigate the uncertainties in emissions as well as to improve the modelling of organic aerosol (OA). Model performance for selected gas phase species and PM2.5 was evaluated using the European air quality database AirBase. Sulfur dioxide (SO2) and ozone (O3) were found to be overestimated for all the four periods, with O3 having the largest mean bias during June 2006 and January–February 2007 periods (8.9 pbb and 12.3 ppb mean biases respectively). In contrast, nitrogen dioxide (NO2) and carbon monoxide (CO) were found to be underestimated for all the four periods. CAMx reproduced both total concentrations and monthly variations of PM2.5 for all the four periods with average biases ranging from −2.1 to 1.0 µg m−3. Comparisons with AMS (aerosol mass spectrometer) measurements at different sites in Europe during February–March 2009 showed that in general the model overpredicts the inorganic aerosol fraction and underpredicts the organic one, such that the good agreement for PM2.5 is partly due to compensation of errors. The effect of the choice of VBS scheme on OA was investigated as well. Two sensitivity tests with volatility distributions based on previous chamber and ambient measurements data were performed. For February–March 2009 the chamber case reduced the total OA concentrations by about 42 % on average. In contrast, a test based on ambient measurement data increased OA concentrations by about 42 % for the same period bringing model and observations into better agreement. Comparison with the AMS data at the rural Swiss site Payerne in June 2006 shows no significant improvement in modelled OA concentration. Further sensitivity tests with increased biogenic and anthropogenic emissions suggest that OA in Payerne was affected by changes in emissions from residential heating during the February–March 2009 whereas it was more sensitive to biogenic precursors in June 2006.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 625 ◽  
Author(s):  
Jana Ďoubalová ◽  
Peter Huszár ◽  
Kryštof Eben ◽  
Nina Benešová ◽  
Michal Belda ◽  
...  

The overall impact of urban environments on the atmosphere is the result of many different nonlinear processes, and their reproduction requires complex modeling approaches. The parameterization of these processes in the models can have large impacts on the model outputs. In this study, the evaluation of a WRF/Comprehensive Air Quality Model with Extensions (CAMx) forecast modeling system set up for Prague, the Czech Republic, within the project URBI PRAGENSI is presented. To assess the impacts of urban parameterization in WRF, in this case with the BEP+BEM (Building Environment Parameterization linked to Building Energy Model) urban canopy scheme, on Particulate Matter (PM) simulations, a simulation was performed for a winter pollution episode and compared to a non-urbanized run with BULK treatment. The urbanized scheme led to an average increase in temperature at 2 m by 2 ∘ C, a decrease in wind speed by 0.5 m s − 1 , a decrease in relative humidity by 5%, and an increase in planetary boundary layer height by 100 m. Based on the evaluation against observations, the overall model error was reduced. These impacts were propagated to the modeled PM concentrations, reducing them on average by 15–30 μ g m − 3 and 10–15 μ g m − 3 for PM 10 and PM 2.5 , respectively. In general, the urban parameterization led to a larger underestimation of the PM values, but yielded a better representation of the diurnal variations.


2021 ◽  
pp. 101207
Author(s):  
Kun Wang ◽  
Yali Tong ◽  
Jiajia Gao ◽  
Xiaoxi Zhang ◽  
Penglai Zuo ◽  
...  

2018 ◽  
Vol 18 (3) ◽  
pp. 2175-2198 ◽  
Author(s):  
Emmanouil Oikonomakis ◽  
Sebnem Aksoyoglu ◽  
Giancarlo Ciarelli ◽  
Urs Baltensperger ◽  
André Stephan Henry Prévôt

Abstract. High surface ozone concentrations, which usually occur when photochemical ozone production takes place, pose a great risk to human health and vegetation. Air quality models are often used by policy makers as tools for the development of ozone mitigation strategies. However, the modeled ozone production is often not or not enough evaluated in many ozone modeling studies. The focus of this work is to evaluate the modeled ozone production in Europe indirectly, with the use of the ozone–temperature correlation for the summer of 2010 and to analyze its sensitivity to precursor emissions and meteorology by using the regional air quality model, the Comprehensive Air Quality Model with Extensions (CAMx). The results show that the model significantly underestimates the observed high afternoon surface ozone mixing ratios (≥ 60 ppb) by 10–20 ppb and overestimates the lower ones (< 40 ppb) by 5–15 ppb, resulting in a misleading good agreement with the observations for average ozone. The model also underestimates the ozone–temperature regression slope by about a factor of 2 for most of the measurement stations. To investigate the impact of emissions, four scenarios were tested: (i) increased volatile organic compound (VOC) emissions by a factor of 1.5 and 2 for the anthropogenic and biogenic VOC emissions, respectively, (ii) increased nitrogen oxide (NOx) emissions by a factor of 2, (iii) a combination of the first two scenarios and (iv) increased traffic-only NOx emissions by a factor of 4. For southern, eastern, and central (except the Benelux area) Europe, doubling NOx emissions seems to be the most efficient scenario to reduce the underestimation of the observed high ozone mixing ratios without significant degradation of the model performance for the lower ozone mixing ratios. The model performance for ozone–temperature correlation is also better when NOx emissions are doubled. In the Benelux area, however, the third scenario (where both NOx and VOC emissions are increased) leads to a better model performance. Although increasing only the traffic NOx emissions by a factor of 4 gave very similar results to the doubling of all NOx emissions, the first scenario is more consistent with the uncertainties reported by other studies than the latter, suggesting that high uncertainties in NOx emissions might originate mainly from the road-transport sector rather than from other sectors. The impact of meteorology was examined with three sensitivity tests: (i) increased surface temperature by 4 ∘C, (ii) reduced wind speed by 50 % and (iii) doubled wind speed. The first two scenarios led to a consistent increase in all surface ozone mixing ratios, thus improving the model performance for the high ozone values but significantly degrading it for the low ozone values, while the third scenario had exactly the opposite effects. Overall, the modeled ozone is predicted to be more sensitive to its precursor emissions (especially traffic NOx) and therefore their uncertainties, which seem to be responsible for the model underestimation of the observed high ozone mixing ratios and ozone production.


Sign in / Sign up

Export Citation Format

Share Document