Intact chloroplast electron flow. Effects of ribose 5-phosphate

1982 ◽  
Vol 680 (3) ◽  
pp. 361-365 ◽  
Author(s):  
Rudolf E. Slovacek
2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Kentaro G. Tanaka ◽  
Masaki Fujimoto ◽  
Iku Shinohara

Magnetopause reconnection would be characterized by the density jump across the current sheet, the flow shear across the boundary, and nonzero guide field. While effects of each of these elements have been studied, the effects arising from the combination of these are still unexplored. Two-dimensional full-particle simulations show that the combination of shear flow and/or guide field with density asymmetry induces the sliding motion of theX-line along the magnetopause. The direction of theX-line motion is controlled either by the ion flow at theX-line when the shear flow effects dominate or by the electron flow at theX-line when the guide field effects dominate. The shear flow effects and the guide field effects may counteract each other in determining the direction of theX-line motion and, in the close proximity of the subsolar region where the flow is slow, theX-line motion can be opposite to the flow direction.


2003 ◽  
Vol 775 ◽  
Author(s):  
Ivan Stanish ◽  
Daniel A. Lowy ◽  
Alok Singh

AbstractImmobilized polymerized electroactive vesicles (IPEVs) are submicron biocapsules capable of storing charge in confined environments and chemisorbing on surfaces. Methods to immobilize stable submicron sized electroactive vesicles and the means to measure electroactivity of IPEVs at nanolevels have been demonstrated. IPEVs can withstand steep potential gradients applied across their membrane, maintain their structural integrity against surfaces poised at high/low electrical potentials, retain electroactive material over several days, and reversibly mediate (within the membrane) electron flow between the electrode surface and vesicle interior. IPEVs have strong potential to be used for charge storage and electron coupling applications that operate on the submicron scale and smaller.


Author(s):  
Mats Lind ◽  
Noam Lior ◽  
Fritz H. Bark ◽  
Farid Alavyoon
Keyword(s):  

2012 ◽  
Vol 30 (1) ◽  
pp. 100
Author(s):  
Wei HUANG ◽  
Shi-Bao ZHANG ◽  
Kun-Fang CAO

2019 ◽  
Vol 99 (3) ◽  
Author(s):  
Egor I. Kiselev ◽  
Jörg Schmalian

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 401
Author(s):  
Minh Khiem Nguyen ◽  
Tin-Han Shih ◽  
Szu-Hsien Lin ◽  
Jun-Wei Lin ◽  
Hoang Chinh Nguyen ◽  
...  

Photosynthesis is an essential biological process and a key approach for raising crop yield. However, photosynthesis in rice is not fully investigated. This study reported the photosynthetic properties and transcriptomic profiles of chlorophyll (Chl) b-deficient mutant (ch11) and wild-type rice (Oryza sativa L.). Chl b-deficient rice revealed irregular chloroplast development (indistinct membranes, loss of starch granules, thinner grana, and numerous plastoglobuli). Next-generation sequencing approach application revealed that the differential expressed genes were related to photosynthesis machinery, Chl-biosynthesis, and degradation pathway in ch11. Two genes encoding PsbR (PSII core protein), FtsZ1, and PetH genes, were found to be down-regulated. The expression of the FtsZ1 and PetH genes resulted in disrupted chloroplast cell division and electron flow, respectively, consequently reducing Chl accumulation and the photosynthetic capacity of Chl b-deficient rice. Furthermore, this study found the up-regulated expression of the GluRS gene, whereas the POR gene was down-regulated in the Chl biosynthesis and degradation pathways. The results obtained from RT-qPCR analyses were generally consistent with those of transcription analysis, with the exception of the finding that MgCH genes were up-regulated which enhance the important intermediate products in the Mg branch of Chl biosynthesis. These results indicate a reduction in the accumulation of both Chl a and Chl b. This study suggested that a decline in Chl accumulation is caused by irregular chloroplast formation and down-regulation of POR genes; and Chl b might be degraded via the pheophorbide b pathway, which requires further elucidation.


Sign in / Sign up

Export Citation Format

Share Document