scholarly journals Physics of Magnetopause Reconnection: A Study of the Combined Effects of Density Asymmetry, Velocity Shear, and Guide Field

2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Kentaro G. Tanaka ◽  
Masaki Fujimoto ◽  
Iku Shinohara

Magnetopause reconnection would be characterized by the density jump across the current sheet, the flow shear across the boundary, and nonzero guide field. While effects of each of these elements have been studied, the effects arising from the combination of these are still unexplored. Two-dimensional full-particle simulations show that the combination of shear flow and/or guide field with density asymmetry induces the sliding motion of theX-line along the magnetopause. The direction of theX-line motion is controlled either by the ion flow at theX-line when the shear flow effects dominate or by the electron flow at theX-line when the guide field effects dominate. The shear flow effects and the guide field effects may counteract each other in determining the direction of theX-line motion and, in the close proximity of the subsolar region where the flow is slow, theX-line motion can be opposite to the flow direction.

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 191
Author(s):  
Naser Hamedi ◽  
Lars-Göran Westerberg

In the present study, the flow of a fibre suspension in a channel containing a cylinder was numerically studied for a very low Reynolds number. Further, the model was validated against previous studies by observing the flexible fibres in the shear flow. The model was employed to simulate the rigid, semi-flexible, and fully flexible fibre particle in the flow past a single cylinder. Two different fibre lengths with various flexibilities were applied in the simulations, while the initial orientation angle to the flow direction was changed between 45° ≤ θ ≤ 75°. It was shown that the influence of the fibre orientation was more significant for the larger orientation angle. The results highlighted the influence of several factors affecting the fibre particle in the flow past the cylinder.


1978 ◽  
Vol 86 (1) ◽  
pp. 49-65 ◽  
Author(s):  
R. C. Ackerberg ◽  
R. D. Patel ◽  
S. K. Gupta

The problem of heat transfer (or mass transfer at low transfer rates) to a strip of finite length in a uniform shear flow is considered. For small values of the Péclet number (based on wall shear rate and strip length), diffusion in the flow direction cannot be neglected as in the classical Leveque solution. The mathematical problem is solved by the method of matched asymptotic expansions and expressions for the local and overall dimensionless heat-transfer rate from the strip are found. Experimental data on wall mass-transfer rates in a tube at small Péclet numbers have been obtained by the well-known limiting-current method using potassium ferrocyanide and potassium ferricyanide in sodium hydroxide solution. The Schmidt number is large, so that a uniform shear flow can be assumed near the wall. Experimental results are compared with our theoretical predictions and the work of others, and the agreement is found to be excellent.


1965 ◽  
Vol 22 (2) ◽  
pp. 385-400 ◽  
Author(s):  
P. G. Saffman

It is shown that a sphere moving through a very viscous liquid with velocity V relative to a uniform simple shear, the translation velocity being parallel to the streamlines and measured relative to the streamline through the centre, experiences a lift force 81·2μVa2k½/v½ + smaller terms perpendicular to the flow direction, which acts to deflect the particle towards the streamlines moving in the direction opposite to V. Here, a denotes the radius of the sphere, κ the magnitude of the velocity gradient, and μ and v the viscosity and kinematic viscosity, respectively. The relevance of the result to the observations by Segrée & Silberberg (1962) of small spheres in Poiseuille flow is discussed briefly. Comments are also made about the problem of a sphere in a parabolic velocity profile and the functional dependence of the lift upon the parameters is obtained.


2013 ◽  
Vol 31 (9) ◽  
pp. 1535-1541 ◽  
Author(s):  
K.-I. Nishikawa ◽  
P. Hardee ◽  
B. Zhang ◽  
I. Duţan ◽  
M. Medvedev ◽  
...  

Abstract. We have investigated the generation of magnetic fields associated with velocity shear between an unmagnetized relativistic jet and an unmagnetized sheath plasma. We have examined the strong magnetic fields generated by kinetic shear (Kelvin–Helmholtz) instabilities. Compared to the previous studies using counter-streaming performed by Alves et al. (2012), the structure of the kinetic Kelvin–Helmholtz instability (KKHI) of our jet-sheath configuration is slightly different, even for the global evolution of the strong transverse magnetic field. In our simulations the major components of growing modes are the electric field Ez, perpendicular to the flow boundary, and the magnetic field By, transverse to the flow direction. After the By component is excited, an induced electric field Ex, parallel to the flow direction, becomes significant. However, other field components remain small. We find that the structure and growth rate of KKHI with mass ratios mi/me = 1836 and mi/me = 20 are similar. In our simulations saturation in the nonlinear stage is not as clear as in counter-streaming cases. The growth rate for a mildly-relativistic jet case (γj = 1.5) is larger than for a relativistic jet case (γj = 15).


2010 ◽  
Vol 26 (5) ◽  
pp. 685-702 ◽  
Author(s):  
Shuyang Cao ◽  
Shigehira Ozono ◽  
Yukio Tamura ◽  
Yaojun Ge ◽  
Hironori Kikugawa

Author(s):  
A. Carlsson ◽  
F. Lundell ◽  
L. D. So¨derberg

The wall effect on the orientation of fibres suspended in a shear flow has been studied experimentally. A fibre suspension, driven by gravity down an inclined glass plate, constitutes the shear flow field. A CCD-camera was mounted underneath the flow in order to visualize the flow. The orientation of fibres in the plane perpendicular to the plate was determined, by using the concept of steerable filters. In a region close to the smooth plate surface the fibres oriented themselves perpendicular to the flow direction. This did not occur when the surface structure was modified with ridges.


2020 ◽  
Vol 60 (9) ◽  
pp. 092002
Author(s):  
A.S. Liang ◽  
X.L. Zou ◽  
W.L. Zhong ◽  
A. Ekedahl ◽  
X.R. Duan ◽  
...  

2020 ◽  
Vol 22 (36) ◽  
pp. 20758-20770
Author(s):  
Mohammad Ahmadi ◽  
Hassan Hassanzadeh ◽  
Jalal Abedi

We employ the Brownian dynamics simulation to examine the shear flow effects on the self-assembly behavior of asphaltenes.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Fiorenza Azzurri ◽  
Paola Stagnaro ◽  
Lucia Conzatti ◽  
Dario Cavallo ◽  
Luca Repetto ◽  
...  

AbstractThe flow induced crystallization behaviour of a LDPE:PE-g-MA:D72T 90:9:1 nanocomposite has been investigated by in-situ Rheo-SALS technique and data have been compared with those obtained from a reference LDPE:PE-g-MA 90:9 sample. Rheo SALS results, confirming thermal analysis findings, indicate that under mild shear flow fields the organoclay exhibits a negligible nucleating effect. Both nucleation density and, as a consequence, crystallization rate, are not appreciably affected by the application of external flow field for both the examined systems, revealing that no evident synergic effects between the organoclay and the shear flow are present. On the other hand, Rheo SALS analysis indicates that the nanocomposite submitted to flow exhibits a higher level of crystal orientation. TEM morphological analyses support this observation suggesting that the orientation of the nanofiller along the flow direction templates the growth of oriented crystals.


Sign in / Sign up

Export Citation Format

Share Document