Quantitation of the repair of gamma-radiation-induced double-strand DNA breaks in human fibroblasts

Author(s):  
William G Woods
Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1115-1125 ◽  
Author(s):  
Fei Xu ◽  
Thomas D Petes

Abstract Meiotic recombination in Saccharomyces cerevisiae is initiated by double-strand DNA breaks (DSBs). Using two approaches, we mapped the position of DSBs associated with a recombination hotspot created by insertion of telomeric sequences into the region upstream of HIS4. We found that the breaks have no obvious sequence specificity and localize to a region of ~50 bp adjacent to the telomeric insertion. By mapping the breaks and by studies of the exonuclease III sensitivity of the broken ends, we conclude that most of the broken DNA molecules have blunt ends with 3′-hydroxyl groups.


2010 ◽  
Vol 32 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Anna Łękawa–Ilczuk ◽  
Halina Antosz ◽  
Beata Rymgayłło–Jankowska ◽  
Tomasz Żarnowski

2017 ◽  
Vol 23 (26) ◽  
pp. 6459-6459
Author(s):  
Sebastian Bestgen ◽  
Carmen Seidl ◽  
Thomas Wiesner ◽  
Andreas Zimmer ◽  
Martina Falk ◽  
...  

Gerontology ◽  
2015 ◽  
Vol 62 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Jin-Sun Ryu ◽  
Hyeon-Sook Koo

Werner syndrome protein (WRN) is unusual among RecQ family DNA helicases in having an additional exonuclease activity. WRN is involved in the repair of double-strand DNA breaks via the homologous recombination and nonhomologous end joining pathways, and also in the base excision repair pathway. In addition, the protein promotes the recovery of stalled replication forks. The helicase activity is thought to unwind DNA duplexes, thereby moving replication forks or Holliday junctions. The targets of the exonuclease could be the nascent DNA strands at a replication fork or the ends of double-strand DNA breaks. However, it is not clear which enzyme activities are essential for repairing different types of DNA damage. Model organisms such as mice, flies, and worms deficient in WRN homologs have been investigated to understand the physiological results of defects in WRN activity. Premature aging, the most remarkable characteristic of Werner syndrome, is also seen in the mutant mice and worms, and hypersensitivity to DNA damage has been observed in WRN mutants of all three model organisms, pointing to conservation of the functions of WRN. In the nematode Caenorhabditis elegans, the WRN homolog contains a helicase domain but no exonuclease domain, so that this animal is very useful for studying the in vivo functions of the helicase without interference from the activity of the exonuclease. Here, we review the current status of investigations of C. elegans WRN-1 and discuss its functional differences from the mammalian homologs.


2009 ◽  
Vol 106 (37) ◽  
pp. 15762-15767 ◽  
Author(s):  
Samantha G. Zeitlin ◽  
Norman M. Baker ◽  
Brian R. Chapados ◽  
Evi Soutoglou ◽  
Jean Y. J. Wang ◽  
...  

The histone H3 variant CENP-A is required for epigenetic specification of centromere identity through a loading mechanism independent of DNA sequence. Using multiphoton absorption and DNA cleavage at unique sites by I-SceI endonuclease, we demonstrate that CENP-A is rapidly recruited to double-strand breaks in DNA, along with three components (CENP-N, CENP-T, and CENP-U) associated with CENP-A at centromeres. The centromere-targeting domain of CENP-A is both necessary and sufficient for recruitment to double-strand breaks. CENP-A accumulation at DNA breaks is enhanced by active non-homologous end-joining but does not require DNA-PKcs or Ligase IV, and is independent of H2AX. Thus, induction of a double-strand break is sufficient to recruit CENP-A in human and mouse cells. Finally, since cell survival after radiation-induced DNA damage correlates with CENP-A expression level, we propose that CENP-A may have a function in DNA repair.


Sign in / Sign up

Export Citation Format

Share Document