Studies on the conformation of amino acids VII. Backbone and side-chain conformations of N-terminal residues in peptides

1970 ◽  
Vol 221 (2) ◽  
pp. 153-158 ◽  
Author(s):  
P.K. Ponnuswamy ◽  
V. Sasisekharan
2021 ◽  
Author(s):  
Mikita Misiura ◽  
Raghav Shroff ◽  
Ross Thyer ◽  
Anatoly Kolomeisky

Prediction of side chain conformations of amino acids in proteins (also termed 'packing') is an important and challenging part of protein structure prediction with many interesting applications in protein design. A variety of methods for packing have been developed but more accurate ones are still needed. Machine learning (ML) methods have recently become a powerful tool for solving various problems in diverse areas of science, including structural biology. In this work we evaluate the potential of Deep Neural Networks (DNNs) for prediction of amino acid side chain conformations. We formulate the problem as image-to-image transformation and train a U-net style DNN to solve the problem. We show that our method outperforms other physics-based methods by a significant margin: reconstruction RMSDs for most amino acids are about 20% smaller compared to SCWRL4 and Rosetta Packer with RMSDs for bulky hydrophobic amino acids Phe, Tyr and Trp being up to 50% smaller.


2016 ◽  
Vol 72 (7) ◽  
pp. 536-543 ◽  
Author(s):  
Carl Henrik Görbitz ◽  
David S. Wragg ◽  
Ingrid Marie Bergh Bakke ◽  
Christian Fleischer ◽  
Gaute Grønnevik ◽  
...  

Racemates of hydrophobic amino acids with linear side chains are known to undergo a unique series of solid-state phase transitions that involve sliding of molecular bilayers upon heating or cooling. Recently, this behaviour was shown to extend also to quasiracemates of two different amino acids with opposite handedness [Görbitz & Karen (2015).J. Phys. Chem. B,119, 4975–4984]. Previous investigations are here extended to an L-2-aminobutyric acid–D-methionine (1/1) co-crystal, C4H9NO2·C5H11NO2S. The significant difference in size between the –CH2CH3and –CH2CH2SCH3side chains leads to extensive disorder at room temperature, which is essentially resolved after a phase transition at 229 K to an unprecedented triclinic form where all four D-methionine molecules in the asymmetric unit have different side-chain conformations and all three side-chain rotamers are used for the four partner L-2-aminobutyric acid molecules.


2014 ◽  
Vol 70 (a1) ◽  
pp. C170-C170
Author(s):  
Carl Henrik Görbitz ◽  
Pavel Karen ◽  
Michal Dusek ◽  
Václav Petříček

Two polymorphs are known to exist under ambient conditions for a number of amino acids (three for glycine). While investigations at high pressure have revealed a number of additional polymorphs, temperature-induced changes are rare. Low-temperature structures with modified side-chain conformations were identified for L- and DL-cysteine. Furthermore, racemates with linear side chains, such as DL-methionine and the non-standard DL-aminobutyric acid (DL-Abu), DL-aminopentanoic acid (DL-norvaline, DL-Nva) and DL-aminohexanoic acid (DL-norleucine, DL-Nle), undergo major crystalline rearrangements on transitions between P21/c and C2/c space groups [1], some of them entropy driven (disordering). As for the corresponding enantio-pure amino acids, we recently described related P21 and I2 structures at 105 K for L-Abu, both with Z' = 4 [2]. A short side-chain C–C bond (1.426 Å) in the only available CSD entry for L-Nle (at 298 K) [3] lead us to suspect that disorder could have been overlooked in the original refinement. L-Nva has not been described previously. We now present single-crystal X-ray determinations between 105 and 405 K for L-Abu, L-Nva and L-Nle, showing phase behavior of unprecedented complexity. For L-Abu and L-Nva we find three different forms in this temperature interval, while four different phases were found for L-Nle. Its known C2 structure with Z' = 1 prevails between 200 and 390 K, and the side chain is indeed disordered 2:1 over two positions. Above 390 K disorder is extensive; the space group remains C2 but cell parameters change. Upon cooling new low-temperature forms are observed at 200 and 170 K. Both are modulated, but to a different extent: data collected at 100 K reveal an almost commensurate phase, while the 180 K phase is fully incommensurate. This is, to our knowledge, the first observation of modulated structures for an amino acid, and also the first observations of major crystalline rearrangements akin to those seen for the corresponding racemates.


2016 ◽  
Author(s):  
Andrew W Watkins ◽  
P. Douglas Renfrew ◽  
Timothy W Craven ◽  
Paramjit S Arora ◽  
Richard Bonneau

β-amino acids offer attractive opportunities to develop biologically active peptidomimetics, either employed alone or in conjunction with natural α-amino acids. Owing to their potential for unique conformational preferences that deviate considerably from α-peptide geometries, β-amino acids greatly expand the possible chemistries and physical properties available to polyamide foldamers. Complete in silico support for designing new molecules incorporating nonnatural amino acids typically requires representing their side chain conformations as sets of discrete rotamers for model refinement and sequence optimization. Such rotamer libraries are key components of several state of the art design frameworks. Here we report the development, incorporation in to the Rosetta macromolecular modeling suite, and validation of rotamer libraries for β3-amino acids.


Sign in / Sign up

Export Citation Format

Share Document