Backbone and side-chain conformations of amino acids and amino acid residues in peptides

Biopolymers ◽  
1970 ◽  
Vol 9 (10) ◽  
pp. 1249-1252 ◽  
Author(s):  
V. Sasisekharan ◽  
P. K. Ponnuswamy
2021 ◽  
Author(s):  
Mikita Misiura ◽  
Raghav Shroff ◽  
Ross Thyer ◽  
Anatoly Kolomeisky

Prediction of side chain conformations of amino acids in proteins (also termed 'packing') is an important and challenging part of protein structure prediction with many interesting applications in protein design. A variety of methods for packing have been developed but more accurate ones are still needed. Machine learning (ML) methods have recently become a powerful tool for solving various problems in diverse areas of science, including structural biology. In this work we evaluate the potential of Deep Neural Networks (DNNs) for prediction of amino acid side chain conformations. We formulate the problem as image-to-image transformation and train a U-net style DNN to solve the problem. We show that our method outperforms other physics-based methods by a significant margin: reconstruction RMSDs for most amino acids are about 20% smaller compared to SCWRL4 and Rosetta Packer with RMSDs for bulky hydrophobic amino acids Phe, Tyr and Trp being up to 50% smaller.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 242
Author(s):  
Yuuki Yamawaki ◽  
Tomoki Yufu ◽  
Tamaki Kato

7-Amino-4-methylcoumarin (AMC) is a low molecular weight fluorescent probe that can be attached to a peptide to enable the detection of specific proteases, such as chymotrypsin, expressed in certain diseases. Because this detection depends on the specificity of the protease toward the peptidyl AMC, the development of specific substrates is required. To investigate the specificity of chymotrypsin, peptidyl AMC compounds incorporating four different amino acid residues were prepared by liquid-phase synthesis. Two unnatural amino acids, 2-amino-4-ethylhexanoic acid (AEH) and cyclohexylalanine (Cha), were used to investigate the substrate specificity as these amino acids have structures different from natural amino acids. AEH was synthesized using diethyl acetamidemalonate as a starting material. The substrate containing Cha had high hydrophobicity and showed a high reaction velocity with chymotrypsin. Although the AEH substrate with a branched side chain had high hydrophobicity, it showed a low reaction velocity. The substrate containing the aromatic amino acid phenylalanine was less hydrophobic than the Cha and AEH substrates, but chymotrypsin showed the highest specificity for this compound. These results demonstrated that the substrate specificity of chymotrypsin is not only affected by the hydrophobicity and aromaticity, but also by the structural expanse of amino acid residues in the substrate.


2020 ◽  
Vol 16 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Fortunatus C. Ezebuo ◽  
Ikemefuna C. Uzochukwu

Background: Sulfotransferase family comprises key enzymes involved in drug metabolism. Oxamniquine is a pro-drug converted into its active form by schistosomal sulfotransferase. The conformational dynamics of side-chain amino acid residues at the binding site of schistosomal sulfotransferase towards activation of oxamniquine has not received attention. Objective: The study investigated the conformational dynamics of binding site residues in free and oxamniquine bound schistosomal sulfotransferase systems and their contribution to the mechanism of oxamniquine activation by schistosomal sulfotransferase using molecular dynamics simulations and binding energy calculations. Methods: Schistosomal sulfotransferase was obtained from Protein Data Bank and both the free and oxamniquine bound forms were subjected to molecular dynamics simulations using GROMACS-4.5.5 after modeling it’s missing amino acid residues with SWISS-MODEL. Amino acid residues at its binding site for oxamniquine was determined and used for Principal Component Analysis and calculations of side-chain dihedrals. In addition, binding energy of the oxamniquine bound system was calculated using g_MMPBSA. Results: The results showed that binding site amino acid residues in free and oxamniquine bound sulfotransferase sampled different conformational space involving several rotameric states. Importantly, Phe45, Ile145 and Leu241 generated newly induced conformations, whereas Phe41 exhibited shift in equilibrium of its conformational distribution. In addition, the result showed binding energy of -130.091 ± 8.800 KJ/mol and Phe45 contributed -9.8576 KJ/mol. Conclusion: The results showed that schistosomal sulfotransferase binds oxamniquine by relying on hybrid mechanism of induced fit and conformational selection models. The findings offer new insight into sulfotransferase engineering and design of new drugs that target sulfotransferase.


1985 ◽  
Vol 50 (12) ◽  
pp. 2925-2936 ◽  
Author(s):  
Štěpánka Štokrová ◽  
Jan Pospíšek ◽  
Jaroslav Šponar ◽  
Karel Bláha

Polypeptides (Lys-X-Ala)n and (Lys-X-Gly)n in which X represents residues of isoleucine and norleucine, respectively, and polypeptide (Tle-Lys-Ala)n, were synthesized via polymerization of 1-hydroxysuccinimidyl esters of the appropriate tripeptides to complete previously studied series. Circular dichroism (CD) spectra of the respective polymers were measured as a function of pH and salt concentration of the medium. The results were correlated with those obtained previously with the same series containing different amino acid residues at the X-position. The helix forming ability of the polypeptides (Lys-X-Ala)n with linear X side chain was found to be independent of the length. In the series (Lys-X-Gly)n the unordered conformation was the most probable one except (Lys-Ile-Gly)n. This polymer assumed the β conformation even in low salt solution at neutral pH. An agreement with some theoretical work concerned with the restriction of conformational freedom of amino acid residue branching at Cβ atom with our experimental results is evident.


1980 ◽  
Vol 45 (2) ◽  
pp. 482-490 ◽  
Author(s):  
Jaroslav Vičar ◽  
François Piriou ◽  
Pierre Fromageot ◽  
Karel Bláha ◽  
Serge Fermandjian

The diastereoisomeric pairs of cyclodipeptides cis- and trans-cyclo(Ala-Ala), cyclo(Ala-Phe), cyclo(Val-Val) and cyclo(Leu-Leu) containing 85% 13C enriched amino-acid residues were synthesized and their 13C-13C coupling constants were measured. The combination of 13C-13C and 1H-1H coupling constants enabled to estimate unequivocally the side chain conformation of the valine and leucine residues.


1991 ◽  
Vol 56 (9) ◽  
pp. 1963-1970 ◽  
Author(s):  
Jan Hlaváček ◽  
Václav Čeřovský ◽  
Jana Pírková ◽  
Pavel Majer ◽  
Lenka Maletínská ◽  
...  

In a series of analogues of the cholecystokinin octapeptide (CCK-8) the amino acid residues were gradually modified by substituting Gly by Pro in position 4, Trp by His in position 5, Met by Cle in position 6, or the Gly residue was inserted between Tyr and Met in positions 2 and 3 of the peptide chain, and in the case of the cholecystokinin heptapeptide (CCK-7) the Met residues were substituted by Nle or Aib. These peptides were investigated from the point of view of their biological potency in the peripheral and central region. From the results of the biological tests it follows that the modifications carried out in these analogues and in their Nα-Boc derivatives mean a suppression of the investigated biological activities by 2-3 orders of magnitude (at a maximum dose of the tested substance of 2 . 10-2 mg per animal).This means that a disturbance of the assumed biologically active conformation of CCK-8, connected with a considerable decrease of the biological potency of the molecule, takes place not only after introduction of the side chain into its centre (substitution of Gly4), but also after the modification of the side chains of the amino acids or by extension of the backbone in further positions around this central amino acid.


RSC Advances ◽  
2021 ◽  
Vol 11 (35) ◽  
pp. 21629-21641
Author(s):  
Chao Xia ◽  
Pingping Wen ◽  
Yaming Yuan ◽  
Xiaofan Yu ◽  
Yijing Chen ◽  
...  

The relative number of peptides modified by the amino acid residues of actin from raw beef patties and those cooked at different roasting temperatures.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 444
Author(s):  
Motoharu Hirano ◽  
Chihiro Saito ◽  
Hidetomo Yokoo ◽  
Chihiro Goto ◽  
Ryuji Kawano ◽  
...  

Magainin 2 (Mag2), which was isolated from the skin of the African clawed frog, is a representative antimicrobial peptide (AMP) that exerts antimicrobial activity via microbial membrane disruption. It has been reported that the helicity and amphipathicity of Mag2 play important roles in its antimicrobial activity. We investigated and recently reported that 17 amino acid residues of Mag2 are required for its antimicrobial activity, and accordingly developed antimicrobial foldamers containing α,α-disubstituted amino acid residues. In this study, we further designed and synthesized a set of Mag2 derivatives bearing the hydrocarbon stapling side chain for helix stabilization. The preferred secondary structures, antimicrobial activities, and cell-membrane disruption activities of the synthesized peptides were evaluated. Our analyses revealed that hydrocarbon stapling strongly stabilized the helical structure of the peptides and enhanced their antimicrobial activity. Moreover, peptide 2 stapling between the first and fifth position from the N-terminus showed higher antimicrobial activity than that of Mag2 against both gram-positive and gram-negative bacteria without exerting significant hemolytic activity. To investigate the modes of action of tested peptides 2 and 8 in antimicrobial and hemolytic activity, electrophysiological measurements were performed.


Sign in / Sign up

Export Citation Format

Share Document