Sucrose synthesis in higher plants and high energy phosphate

1952 ◽  
Vol 8 ◽  
pp. 478-479
Author(s):  
B.J.D. Meeuse ◽  
Atie Van Der Eijk ◽  
H.E. Latuasan
Blood ◽  
1967 ◽  
Vol 30 (2) ◽  
pp. 151-167 ◽  
Author(s):  
JOHN LASZLO ◽  
Clarence Ellis

Abstract 1. Leukocytes taken from patients having acute lymphocytic leukemia and chronic lymphocytic leukemia are characterized by high respiratory rates and low to absent aerobic glycolysis. Leukemic granulocytes have low respiratory rates and high aerobic glycolysis. 2. Lymphocytes and granulocytes have the capacity for high glycolytic rates under anaerobic conditions. 3. Lymphocyte respiration is independent of glucose concentration in contrast to granulocyte respiration. 4. High energy phosphate levels of lymphocytes and granulocytes are unchanged if these cells are incubated aerobically, either with or without glucose, or anaerobically in the presence of glucose. 5. Aerobic glycolysis can be induced in lymphocytes by the addition of foreign plasma. Foreign plasma may also alter granulocyte metabolism.


1994 ◽  
Vol 266 (5) ◽  
pp. C1257-C1262 ◽  
Author(s):  
Y. Ohira ◽  
K. Saito ◽  
T. Wakatsuki ◽  
W. Yasui ◽  
T. Suetsugu ◽  
...  

Responses of beta-adrenoceptor (beta-AR) in rat soleus to gravitational unloading and/or changes in the levels of phosphorus compounds by feeding either creatine or its analogue beta-guanidinopropionic acid (beta-GPA) were studied. A decrease in the density of beta-AR (about -35%) was induced by 10 days of hindlimb suspension, but the affinity of the receptor was unaffected. Suspension unloading tended to increase the levels of adenosine triphosphate and phosphocreatine and decrease inorganic phosphate. Even without unloading, the beta-AR density decreased after an oral creatine supplementation (about -20%), which also tended to elevate the high-energy phosphate levels in muscle. However, an elevation of beta-AR density was induced (about +36%) after chronic depletion of high-energy phosphates by feeding beta-GPA (about +125%). Data suggest that the density of beta-AR in muscle is elevated if the high-energy phosphate contents are chronically decreased and vice versa. However, it may not be directly related to the degree of muscle contractile activity.


1998 ◽  
Vol 88 (6) ◽  
pp. 1058-1065 ◽  
Author(s):  
Kenneth R. Wagner ◽  
Guohua Xi ◽  
Ya Hua ◽  
Marla Kleinholz ◽  
Gabrielle M. de Courten-Myers ◽  
...  

Object. The authors previously demonstrated, in a large-animal intracerebral hemorrhage (ICH) model, that markedly edematous (“translucent”) white matter regions (> 10% increases in water contents) containing high levels of clotderived plasma proteins rapidly develop adjacent to hematomas. The goal of the present study was to determine the concentrations of high-energy phosphate, carbohydrate substrate, and lactate in these and other perihematomal white and gray matter regions during the early hours following experimental ICH. Methods. The authors infused autologous blood (1.7 ml) into frontal lobe white matter in a physiologically controlled model in pigs (weighing approximately 7 kg each) and froze their brains in situ at 1, 3, 5, or 8 hours postinfusion. Adenosine triphosphate (ATP), phosphocreatine (PCr), glycogen, glucose, lactate, and water contents were then measured in white and gray matter located ipsi- and contralateral to the hematomas, and metabolite concentrations in edematous brain regions were corrected for dilution. In markedly edematous white matter, glycogen and glucose concentrations increased two- to fivefold compared with control during 8 hours postinfusion. Similarly, PCr levels increased several-fold by 5 hours, whereas, except for a moderate decrease at 1 hour, ATP remained unchanged. Lactate was markedly increased (approximately 20 µmol/g) at all times. In gyral gray matter overlying the hematoma, water contents and glycogen levels were significantly increased at 5 and 8 hours, whereas lactate levels were increased two- to fourfold at all times. Conclusions. These results, which demonstrate normal to increased high-energy phosphate and carbohydrate substrate concentrations in edematous perihematomal regions during the early hours following ICH, are qualitatively similar to findings in other brain injury models in which a reduction in metabolic rate develops. Because an energy deficit is not present, lactate accumulation in edematous white matter is not caused by stimulated anaerobic glycolysis. Instead, because glutamate concentrations in the blood entering the brain's extracellular space during ICH are several-fold higher than normal levels, the authors speculate, on the basis of work reported by Pellerin and Magistretti, that glutamate uptake by astrocytes leads to enhanced aerobic glycolysis and lactate is generated at a rate that exceeds utilization.


2002 ◽  
Vol 105 (2) ◽  
pp. 153-159 ◽  
Author(s):  
Douglas Baldwin ◽  
Y. Chandrashekhar ◽  
Edward McFalls ◽  
Inder Anand ◽  
Daosheng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document