Kainic acid produces depolarization of CA3 pyramidal cells in the in vitro hippocampal slice

1981 ◽  
Vol 221 (1) ◽  
pp. 117-127 ◽  
Author(s):  
John H. Robinson ◽  
Sam A. Deadwyler
2007 ◽  
Vol 98 (1) ◽  
pp. 96-104 ◽  
Author(s):  
Jay Spampanato ◽  
Istvan Mody

Network activity in the 200- to 600-Hz range termed high-frequency oscillations (HFOs) has been detected in epileptic tissue from both humans and rodents and may underlie the mechanism of epileptogenesis in experimental rodent models. Slower network oscillations including theta and gamma oscillations as well as ripples are generated by the complex spike timing and interactions between interneurons and pyramidal cells of the hippocampus. We determined the activity of CA3 pyramidal cells, stratum oriens lacunosum-moleculare (O-LM) and s. radiatum lacunosum-moleculare (R-LM) interneurons during HFO in the in vitro low-Mg2+ model of epileptiform activity in GIN mice. In these animals, interneurons can be identified prior to cell-attached recordings by the expression of green-fluorescent protein (GFP). Simultaneous local field potential recordings from s. pyramidale and on-cell recordings of individual interneurons and principal cells revealed three primary firing behaviors of the active cells: 36% of O-LM interneurons and 60% of pyramidal cells fired action potentials at high frequencies during the HFO. R-LM interneurons were biphasic in that they fired at high frequency at the beginning of the HFO but stopped firing before its end. When considering only the highest frequency component of the oscillations most pyramidal cells fired on the rising phase of the oscillation. These data provide evidence for functional distinction during HFOs within otherwise homogeneous groups of O-LM interneurons and pyramidal cells.


1993 ◽  
Vol 70 (3) ◽  
pp. 961-975 ◽  
Author(s):  
S. F. Stasheff ◽  
M. Hines ◽  
W. A. Wilson

1. Intracellular and extracellular recording techniques were used to study the increase in ectopic (i.e., nonsomatic) action-potential generation occurring among CA3 pyramidal cells during the kindling-like induction of electrographic seizures (EGSs) in this subpopulation of the hippocampal slice. Kindling-like stimulus trains (60 Hz, 2 s) were delivered to s. radiatum of CA3 at 10-min intervals. As EGSs developed, the frequency of ectopic firing increased markedly (by 10.33 +/- 3.29 spikes/min, mean +/- SE, P << 0.01). Several methods were applied to determine the initiation site for these action potentials within the cell (axons vs. dendrites). 2. Collision tests were conducted between known antidromic and orthodromic action potentials in CA3 cells to determine the critical period, c, for collision. Attempts were then made to collide ectopic spikes with known antidromic action potentials. At intervals less than c, ectopic spikes failed to collide with antidromic ones, in 5 of 10 cases. In these cells, this clearly indicates that the ectopic spikes were themselves of axonal origin. In the remaining five cases, ectopic spikes collided with antidromic action potentials at intervals approximately equal to c, most likely because of interactions within the complex system of recurrent axon collaterals in CA3. 3. Action potentials of CA3 pyramidal cells were simulated with the use of a compartmental computer model, NEURON. These simulations were based on prior models of CA3 pyramidal neurons and of the motoneuron action potential. Simulated action potentials generated in axonal compartments possessed a prominent inflection on their rising phase (IS-SD break), which was difficult to appreciate in those spikes generated in somatic or dendritic compartments. 4. An analysis of action potentials recorded experimentally from CA3 pyramidal cells also showed that antidromic spikes possess a prominent IS-SD break that is not present in orthodromic spikes. In addition to identified antidromic action potentials, ectopic spikes also possess such an inflection. Together with the predictions of computer simulations, this analysis also indicates that ectopic spikes originate in the axons of CA3 cells. 5. Tetrodotoxin (TTX, 50 microM) was locally applied by pressure injection while monitoring ectopic spike activity. Localized application of TTX to regions of the slice that could include the axons but not the dendrites of recorded cells abolished or markedly reduced the frequency of ectopic spikes (n = 5), further confirming the hypothesis that these action potentials arise from CA3 axons.(ABSTRACT TRUNCATED AT 400 WORDS)


1998 ◽  
Vol 80 (5) ◽  
pp. 2268-2273 ◽  
Author(s):  
Mitsuo Tanabe ◽  
Beat H. Gähwiler ◽  
Urs Gerber

Tanabe, Mitsuo, Beat H. Gähwiler, and Urs Gerber. L-type Ca2+ channels mediate the slow Ca2+-dependent afterhyperpolarization current in rat CA3 pyramidal cells in vitro. J. Neurophysiol. 80: 2268–2273, 1998. Single-electrode voltage-clamp recordings were obtained from CA3 pyramidal cells in rat hippocampal organotypic slice cultures, and the slow Ca2+-dependent K+ current or afterhyperpolarization current ( I AHP) was elicited with brief depolarizing voltage jumps. The slow I AHP was suppressed by the selective L-type Ca2+ channel antagonists isradipine (2 μM) or nifedipine (10 μM). In contrast, neither ω-conotoxin MVIIA (1 μM) nor ω-agatoxin IVA (200 nM), N-type and P/Q-type Ca2+ channel antagonists, respectively, attenuated this slow outward current. The slow I AHP was significantly reduced by thapsigargin (10 μM), a Ca2+ ATPase inhibitor that depletes intracellular Ca2+ stores, and by ryanodine (10–100 μM), which blocks Ca2+-induced Ca2+ release from intracellular compartments. At this concentration thapsigargin did not modify high-threshold Ca2+ current, which was, however, blocked by isradipine. Thus, in hippocampal CA3 pyramidal cells, Ca2+ influx through L-type Ca2+ channels is necessary to trigger the slow I AHP. Furthermore, intracellular Ca2+-activated Ca2+ stores represent a critical component in the transduction pathway leading to the generation of the slow I AHP.


1980 ◽  
Vol 192 (2) ◽  
pp. 333-359 ◽  
Author(s):  
J. Victor Nadler ◽  
Bruce W. Perry ◽  
Christine Gentry ◽  
Carl W. Cotman

2003 ◽  
Vol 89 (1) ◽  
pp. 427-441 ◽  
Author(s):  
Audrey S. Yee ◽  
J. Mark Longacher ◽  
Kevin J. Staley

This paper analyzes the effects of a convulsant and an anticonvulsant manipulation on spontaneous bursts in CA3 pyramidal cells in the in vitro slice preparation under conditions of low (3.3 mM [K+]o) and high (8.5 mM [K+]o) burst probability. When burst probability was low, the anticonvulsant, pentobarbital, produced the anticipated effects: the burst duration decreased and interburst interval increased. However, when burst probability was high, both anticonvulsant and convulsant manipulations decreased the interburst interval and the burst duration. To reconcile these findings, we utilized a model in which CA3 burst duration is limited by activity-dependent depression of CA3 excitatory recurrent collateral synapses and the interburst interval is determined by the time required to recover from this depression. We defined the burst end threshold as the level of synaptic depression at which bursts terminate, and the burst start threshold as the level of synaptic depression at which burst initiation is possible. Synapses were considered to oscillate between these thresholds. When average burst duration and interburst interval data were fit using this model, the paradoxically similar effects of the convulsant and anticonvulsant manipulations could be quantitatively interpreted. The convulsant maneuver decreased both the burst start and end thresholds. The start threshold decreased more than the end threshold, so that the thresholds were closer together. This decreased the time needed to transition from one threshold to the other, i.e., the interburst interval and burst duration. The anticonvulsant manipulation primarily increased the burst end threshold. This also decreased the difference between thresholds, decreasing both interburst interval and burst duration. This model resolves the paradoxical proconvulsant effects of pentobarbital in the CA3 preparation and provides insights into the effects of anticonvulsants on epileptiform discharges in the human EEG.


Sign in / Sign up

Export Citation Format

Share Document