Differential depressive action of two μ and δ opioid ligands on neuronal responses to noxious stimuli in the thalamic ventrobasal complex of rat

1986 ◽  
Vol 398 (1) ◽  
pp. 49-56 ◽  
Author(s):  
J.M. Benoist ◽  
V. Kayser ◽  
G. Gacel ◽  
J.M. Zajac ◽  
M. Gautron ◽  
...  
eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Kali Esancy ◽  
Logan Condon ◽  
Jing Feng ◽  
Corinna Kimball ◽  
Andrew Curtright ◽  
...  

Little is known about the capacity of lower vertebrates to experience itch. A screen of itch-inducing compounds (pruritogens) in zebrafish larvae yielded a single pruritogen, the TLR7 agonist imiquimod, that elicited a somatosensory neuron response. Imiquimod induced itch-like behaviors in zebrafish distinct from those induced by the noxious TRPA1 agonist, allyl isothiocyanate. In the zebrafish, imiquimod-evoked somatosensory neuronal responses and behaviors were entirely dependent upon TRPA1, while in the mouse TRPA1 was required for the direct activation of somatosensory neurons and partially responsible for behaviors elicited by this pruritogen. Imiquimod was found to be a direct but weak TRPA1 agonist that activated a subset of TRPA1 expressing neurons. Imiquimod-responsive TRPA1 expressing neurons were significantly more sensitive to noxious stimuli than other TRPA1 expressing neurons. Together, these results suggest a model for selective itch via activation of a specialized subpopulation of somatosensory neurons with a heightened sensitivity to noxious stimuli.


2002 ◽  
Vol 97 (2) ◽  
pp. 412-417 ◽  
Author(s):  
Masanori Yamauchi ◽  
Hiroshi Sekiyama ◽  
Steven G. Shimada ◽  
J. G. Collins

Background A major effect of general anesthesia is lack of response in the presence of a noxious stimulus. Anesthetic depression of spinal sensory neuronal responses to noxious stimuli is likely to contribute to that essential general anesthetic action. The authors tested the hypothesis that gamma-aminobutyric acid receptor type A (GABA(A)) and strychnine-sensitive glycine receptor systems mediate halothane depression of spinal sensory neuronal responses to noxious stimuli. Methods Extracellular activity of single spinal dorsal horn wide dynamic range (WDR) neurons was recorded in decerebrate, spinal cord transected rats. Neuronal responses to noxious (thermal and mechanical) and nonnoxious stimuli were examined in the drug-free state. Subsequently, cumulative doses (0.1-2.0 mg/kg) of bicuculline (GABA(A) antagonist) or strychnine (glycine antagonist) were administered intravenously in the absence or presence of 1 minimum alveolar concentration (MAC) of halothane. Results Halothane, 1.1%, depressed the response of WDR neurons to both forms of noxious stimuli. Antagonists, by themselves, had no effect on noxiously evoked activity. However, bicuculline and strychnine (maximum cumulative dose, 2.0 mg/kg) partially but significantly reversed the halothane depression of noxiously evoked activity. Similar results were seen with most, but not all, forms of nonnoxiously evoked activity. In the absence of halothane, strychnine significantly increased neuronal responses to low threshold receptive field brushing. Conclusion Halothane depression of spinal WDR neuronal responses to noxious and most nonnoxious stimuli is mediated, in part, by GABA(A) and strychnine-sensitive glycine systems. A spinal source of glycine tonically inhibits some forms of low threshold input to WDR neurons.


2016 ◽  
Vol 23 (40) ◽  
pp. 4506-4528 ◽  
Author(s):  
Rita Turnaturi ◽  
Giuseppina Arico ◽  
Giuseppe Ronsisvalle ◽  
Lorella Pasquinucci ◽  
Carmela Parenti

Sign in / Sign up

Export Citation Format

Share Document