opioid ligands
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 21)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Vol 14 (11) ◽  
pp. 1091
Author(s):  
Alok K. Paul ◽  
Craig M. Smith ◽  
Mohammed Rahmatullah ◽  
Veeranoot Nissapatorn ◽  
Polrat Wilairatana ◽  
...  

Opioids are widely used as therapeutic agents against moderate to severe acute and chronic pain. Still, these classes of analgesic drugs have many potential limitations as they induce analgesic tolerance, addiction and numerous behavioural adverse effects that often result in patient non-compliance. As opium and opioids have been traditionally used as painkillers, the exact mechanisms of their adverse reactions over repeated use are multifactorial and not fully understood. Older adults suffer from cancer and non-cancer chronic pain more than younger adults, due to the physiological changes related to ageing and their reduced metabolic capabilities and thus show an increased number of adverse reactions to opioid drugs. All clinically used opioids are μ-opioid receptor agonists, and the major adverse effects are directly or potentially connected to this receptor. Multifunctional opioid ligands or peripherally restricted opioids may elicit fewer adverse effects, as shown in preclinical studies, but these results need reproducibility from further extensive clinical trials. The current review aims to overview various mechanisms involved in the adverse effects induced by opioids, to provide a better understanding of the underlying pathophysiology and, ultimately, to help develop an effective therapeutic strategy to better manage pain.


2021 ◽  
Vol 2 ◽  
Author(s):  
Florence Noble ◽  
Nicolas Marie

Opioid are the most powerful analgesics ever but their use is still limited by deleterious side effects such as tolerance, dependence, and respiratory depression that could eventually lead to a fatal overdose. The opioid crisis, mainly occurring in north America, stimulates research on finding new opioid ligands with reduced side effects. Among them, biased ligands are likely the most promising compounds. We will review some of the latest discovered biased opioid ligands and see if they were able to fulfill these expectations.


Author(s):  
Li He ◽  
Sarah W. Gooding ◽  
Elinor Lewis ◽  
Lindsey C. Felth ◽  
Anirudh Gaur ◽  
...  

AbstractOpioid drugs are widely used analgesics that activate the G protein-coupled µ-opioid receptor, whose endogenous neuropeptide agonists, endorphins and enkephalins, are potent pain relievers. The therapeutic utility of opioid drugs is hindered by development of tolerance to the analgesic effects, requiring dose escalation for persistent pain control and leading to overdose and fatal respiratory distress. The prevailing hypothesis is that the intended analgesic effects of opioid drugs are mediated by µ-opioid receptor signaling to G protein, while the side-effects of respiratory depression and analgesic tolerance are caused by engagement of the receptor with the arrestin-3 protein. Consequently, opioid drug development has focused exclusively on identifying agonists devoid of arrestin-3 engagement. Here, we challenge the prevailing hypothesis with a panel of six clinically relevant opioid drugs and mice of three distinct genotypes with varying abilities to promote morphine-mediated arrestin-3 engagement. With this genetic and pharmacological approach, we demonstrate that arrestin-3 recruitment does not impact respiratory depression, and effective arrestin-3 engagement reduces, rather than exacerbates, the development of analgesic tolerance. These studies suggest that future development of safer opioids should focus on identifying opioid ligands that recruit both G protein and arrestin-3, thereby mimicking the signaling profile of most endogenous µ-opioid receptor agonists.


2021 ◽  
Vol 14 (677) ◽  
pp. eaav0320
Author(s):  
Tao Che ◽  
Hemlata Dwivedi-Agnihotri ◽  
Arun K. Shukla ◽  
Bryan L. Roth

The opioid crisis represents a major worldwide public health crisis that has accelerated the search for safer and more effective opioids. Over the past few years, the identification of biased opioid ligands capable of eliciting selective functional responses has provided an alternative avenue to develop novel therapeutics without the side effects of current opioid medications. However, whether biased agonism or other pharmacological properties, such as partial agonism (or low efficacy), account for the therapeutic benefits remains questionable. Here, we provide a summary of the current status of biased opioid ligands that target the μ- and κ-opioid receptors and highlight advances in preclinical and clinical trials of some of these ligands. We also discuss an example of structure-based biased ligand discovery at the μ-opioid receptor, an approach that could revolutionize drug discovery at opioid and other receptors. Last, we briefly discuss caveats and future directions for this important area of research.


2021 ◽  
Vol 270 ◽  
pp. 113872
Author(s):  
Tao Hou ◽  
Fangfang Xu ◽  
Xingrong Peng ◽  
Han Zhou ◽  
Xiuli Zhang ◽  
...  

2021 ◽  
Author(s):  
Remy Sounier ◽  
Sebastien Granier ◽  
Damien Maurel ◽  
Xiaojing Cong ◽  
Helene DEMENE ◽  
...  

GPCR functional selectivity whereby a ligand discriminates specific signaling pathways has opened new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to selectively activate the G protein over the β-arrestin pathways through the μ-opioid receptor (μOR). We combined functional assays in living cells, solution NMR spectroscopy and enhanced-sampling molecular dynamic simulations to identify the specific μOR conformations induced by G protein-selective agonists. In particular, we describe the dynamic and allosteric communications between the ligand-binding pocket and the receptor intracellular domains, through conserved motifs in class A GPCRs. Most strikingly, the selective agonists triggered μOR conformational changes in the intracellular loop 1 and helix 8 domains, which may impair β-arrestin binding or signaling. The findings may apply to other GPCR families and provide key molecular information that could facilitate the design of selective ligands.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4257 ◽  
Author(s):  
Abdelfattah Faouzi ◽  
Balazs R. Varga ◽  
Susruta Majumdar

Achieving effective pain management is one of the major challenges associated with modern day medicine. Opioids, such as morphine, have been the reference treatment for moderate to severe acute pain not excluding chronic pain modalities. Opioids act through the opioid receptors, the family of G-protein coupled receptors (GPCRs) that mediate pain relief through both the central and peripheral nervous systems. Four types of opioid receptors have been described, including the μ-opioid receptor (MOR), κ-opioid receptor (KOR), δ-opioid receptor (DOR), and the nociceptin opioid peptide receptor (NOP receptor). Despite the proven success of opioids in treating pain, there are still some inherent limitations. All clinically approved MOR analgesics are associated with adverse effects, which include tolerance, dependence, addiction, constipation, and respiratory depression. On the other hand, KOR selective analgesics have found limited clinical utility because they cause sedation, anxiety, dysphoria, and hallucinations. DOR agonists have also been investigated but they have a tendency to cause convulsions. Ligands targeting NOP receptor have been reported in the preclinical literature to be useful as spinal analgesics and as entities against substance abuse disorders while mixed MOR/NOP receptor agonists are useful as analgesics. Ultimately, the goal of opioid-related drug development has always been to design and synthesize derivatives that are equally or more potent than morphine but most importantly are devoid of the dangerous residual side effects and abuse potential. One proposed strategy is to take advantage of biased agonism, in which distinct downstream pathways can be activated by different molecules working through the exact same receptor. It has been proposed that ligands not recruiting β-arrestin 2 or showing a preference for activating a specific G-protein mediated signal transduction pathway will function as safer analgesic across all opioid subtypes. This review will focus on the design and the pharmacological outcomes of biased ligands at the opioid receptors, aiming at achieving functional selectivity.


ChemPlusChem ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. 1354-1364
Author(s):  
Antonios Drakopoulos ◽  
Michael Decker

Sign in / Sign up

Export Citation Format

Share Document