Pozzolanic and cementitious reactions of fly ash in blended cement pastes

1988 ◽  
Vol 18 (2) ◽  
pp. 301-310 ◽  
Author(s):  
Bryan K. Marsh ◽  
Robert L. Day
Keyword(s):  
Fly Ash ◽  
2019 ◽  
Vol 967 ◽  
pp. 205-213
Author(s):  
Faiz U.A. Shaikh ◽  
Anwar Hosan

This paper presents the effect of nanosilica (NS) on compressive strength and microstructure of cement paste containing high volume slag and high volume slag-fly ash blend as partial replacement of ordinary Portland cement (OPC). Results show that high volume slag (HVS) cement paste containing 60% slag exhibited about 4% higher compressive strength than control cement paste, while the HVS cement paste containing 70% slag maintained the similar compressive strength to control cement paste. However, about 9% and 37% reduction in compressive strength in HVS cement pastes is observed due to use of 80% and 90% slag, respectively. The high volume slag-fly ash (HVSFA) cement pastes containing total slag and fly ash content of 60% exhibited about 5%-16% higher compressive strength than control cement paste. However, significant reduction in compressive strength is observed in higher slag-fly ash blends with increasing in fly ash contents. Results also show that the addition of 1-4% NS improves the compressive strength of HVS cement paste containing 70% slag by about 9-24%. However, at higher slag contents of 80% and 90% this improvement is even higher e.g. 11-29% and 17-41%, respectively. The NS addition also improves the compressive strength by about 1-59% and 5-21% in high volume slag-fly ash cement pastes containing 21% fly ash+49%slag and 24% fly ash+56%slag, respectively. The thermogravimetric analysis (TGA) results confirm the reduction of calcium hydroxide (CH) in HVS/HVSFA pastes containing NS indicating the formation of additional calcium silicate hydrate (CSH) gels in the system. By combining slag, fly ash and NS in high volumes e.g. 70-80%, the carbon footprint of cement paste is reduced by 66-76% while maintains the similar compressive strength of control cement paste. Keywords: high volume slag, nanosilica, compressive strength, TGA, high volume slag-fly ash blend, CO2 emission.


2013 ◽  
Vol 539 ◽  
pp. 55-59
Author(s):  
Yi Chen ◽  
Wu Yao ◽  
Dan Jin

Mineral additions such as fly ash and silica fume are industrial by products, and play an important role in properties improvement for construction materials. In this work, the shrinkage of cement paste blended with fly ash and silica fume by different substitute ratio was studied. Pore structures of specimens at different ages were determined by mercury intrusion porosimetry (MIP) and shrinkage deformation was measured by standard shrinkage tests. The effects of mineral addtions on shrinkage were discussed. The results show that the fly ash was significantly effective on shrinkage at early ages. Based on the research, several suitable advices were offered to optimize the performances of materials and reduce the shrinkage.


2013 ◽  
Vol 25 (10) ◽  
pp. 5675-5677
Author(s):  
Yan Li ◽  
Dao Sheng Sun ◽  
Xiu Sheng Wu ◽  
Ai Guo Wang ◽  
Wei Xu ◽  
...  

2020 ◽  
Vol 257 ◽  
pp. 119598
Author(s):  
Wei Liu ◽  
Yongqiang Li ◽  
Shifa Lin ◽  
Luping Tang ◽  
Zhijun Dong ◽  
...  

2012 ◽  
Vol 535-537 ◽  
pp. 1735-1738 ◽  
Author(s):  
Yan Li ◽  
Dao Sheng Sun ◽  
Xiu Sheng Wu ◽  
Ai Guo Wang ◽  
Wei Xu ◽  
...  

This paper reports the drying shrinkage and compressive strength results of cement pastes with fly ash and silica fume. In this study, Portland cement (PC) was used as the basic cementitious material. Fly ash (FA) and silica fume (SF) were used as cement replacement materials at levels of 0%, 5%, 10%, and 15% , 40%, 35%, 25%, and 15% by weight of the total cementitious material, respectively. The water/cement (PC + FA + SF) ratios (w/c) was 0.28 by weight. The samples produced from fresh pastes were demoulded after a day; then they were cured at 20 ±1°C with 50 ± 3% relative humidity (RH) until the samples were used for drying shrinkage and compressive strength measurement at various ages. The results show that drying shrinkage and compressive strength increase with increasing SF content, and the optimum composition of blended cement pastes is the cement paste with 30% fly ash and 10% silica fume, which possesses lower drying shrinkage values than that of plain cement paste and higher early age strength than that of blended cement pastes with fly ash. Furthermore, a linear relationship is established between compressive strength and drying shrinkage. By comparing the development of compressive strength and the drying shrinkage deformations, it appears possible to predict the drying shrinkage according to the acquired compressive strength.


Sign in / Sign up

Export Citation Format

Share Document