Gas-particle heat transfer coefficients in packed beds at low Reynolds numbers

1975 ◽  
Vol 30 (9) ◽  
pp. 1015-1018 ◽  
Author(s):  
A. Cybulski ◽  
M.J. Van Dalen ◽  
J.W. Verkerk ◽  
P.J. Van Den Berg
2005 ◽  
Vol 128 (6) ◽  
pp. 557-563 ◽  
Author(s):  
Paul L. Sears ◽  
Libing Yang

Heat transfer coefficients were measured for a solution of surfactant drag-reducing additive in the entrance region of a uniformly heated horizontal cylindrical pipe with Reynolds numbers from 25,000 to 140,000 and temperatures from 30to70°C. In the absence of circumferential buoyancy effects, the measured Nusselt numbers were found to be in good agreement with theoretical results for laminar flow. Buoyancy effects, manifested as substantially higher Nusselt numbers, were seen in experiments carried out at high heat flux.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Akhilesh P. Rallabandi ◽  
Huitao Yang ◽  
Je-Chin Han

Systematic experiments are conducted to measure heat transfer enhancement and pressure loss characteristics on a square channel (simulating a gas turbine blade cooling passage) with two opposite surfaces roughened by 45 deg parallel ribs. Copper plates fitted with a silicone heater and instrumented with thermocouples are used to measure regionally averaged local heat transfer coefficients. Reynolds numbers studied in the channel range from 30,000 to 400,000. The rib height (e) to hydraulic diameter (D) ratio ranges from 0.1 to 0.18. The rib spacing (p) to height ratio (p/e) ranges from 5 to 10. Results show higher heat transfer coefficients at smaller values of p/e and larger values of e/D, though at the cost of higher friction losses. Results also indicate that the thermal performance of the ribbed channel falls with increasing Reynolds numbers. Correlations predicting Nusselt number (Nu) and friction factor (f¯) as a function of p/e, e/D, and Re are developed. Also developed are correlations for R and G (friction and heat transfer roughness functions, respectively) as a function of the roughness Reynolds number (e+), p/e, and e/D.


1983 ◽  
Vol 105 (4) ◽  
pp. 862-869 ◽  
Author(s):  
R. S. Amano ◽  
M. K. Jensen ◽  
P. Goel

An experimental and numerical study is reported on heat transfer in the separated flow region created by an abrupt circular pipe expansion. Heat transfer coefficients were measured along the pipe wall downstream from an expansion for three different expansion ratios of d/D = 0.195, 0.391, and 0.586 for Reynolds numbers ranging from 104 to 1.5 × 105. The results are compared with the numerical solutions obtained with the k ∼ ε turbulence model. In this computation a new finite difference scheme is developed which shows several advantages over the ordinary hybrid scheme. The study also covers the derivation of a new wall function model. Generally good agreement between the measured and the computed results is shown.


Author(s):  
Jeremy C. Bailey ◽  
Ronald S. Bunker

Heat transfer and friction coefficients have been measured within a rectangular passage of aspect ratio 0.4 containing 45-degree staggered turbulators of very high blockage. Using a constant pitch-to-height ratio of 10 for all geometries, turbulator height-to-channel hydraulic diameter ratios from 0.193 to 0.333 were investigated. This range of e/D creates actual channel blockage ratios e/H from 0.275 to 0.475, presenting significant flow area restrictions. A liquid crystal test technique is used to obtain both detailed heat transfer behavior on the surfaces between turbulators, as well as averaged fully developed heat transfer coefficients. Reynolds numbers from 20000 to 100000 were tested. Nusselt number enhancements of up to 3.6 were obtained over that of a smooth channel, with friction coefficient enhancements of as much as 65. In contrast to low-blockage turbulated channels, the 45-degree turbulated Nu is found to be lower than that at 90-degree orientation, given very similar e/D and e/H values.


Sign in / Sign up

Export Citation Format

Share Document