A model for bubble formation from an orifice with liquid cross-flow

1993 ◽  
Vol 48 (11) ◽  
pp. 2049-2059 ◽  
Author(s):  
S.H. Marshall ◽  
M.W. Chudacek ◽  
D.F. Bagster
Keyword(s):  
Author(s):  
Thomas Shepard ◽  
Eric Ruud ◽  
Henry Kinane ◽  
Deify Law ◽  
Kohl Ordahl

Controlling bubble diameter and bubble size distribution is important for a variety of applications and active fields of research. In this study the formation of bubbles from porous plates in a liquid cross-flow is examined experimentally. By injecting air through porous plates of various media grades (0.2 to 100) into liquid flows in rectangular channels of varying aspect ratio (1–10) and gas/liquid flow rates the impact of the various factors is presented. Image processing techniques were used to measure bubble diameters and capture their formation from the porous plates. Mean bubble diameters ranged from 0.06–1.21 mm. The present work expands upon the work of [1] and further identifies the relative importance of wall shear stress, air injector pore size and gas to liquid mass flow ratio on bubble size and size distribution.


2013 ◽  
Author(s):  
Mona Hassanzadeh Jobehdar ◽  
Aly H. Gadallah ◽  
Kamran Siddiqui ◽  
Wajid A. Chishty

2016 ◽  
Vol 95 (2) ◽  
pp. 372-385 ◽  
Author(s):  
Miguel A. Balzán ◽  
R. Sean Sanders ◽  
Brian A. Fleck

2016 ◽  
Vol 61 ◽  
pp. 599-609 ◽  
Author(s):  
M.H. Jobehdar ◽  
K. Siddiqui ◽  
A.H. Gadallah ◽  
W.A. Chishty

2014 ◽  
Vol 635-637 ◽  
pp. 346-353 ◽  
Author(s):  
Miao Miao Li ◽  
Jun Geng ◽  
Ru Peng Zhu

A mathematical model was established and validated to predict the microbubble diameter when it departing from the carbon paper and moving into the channel of μDMFC. Single bubble behaviors were studied using the model, which took the gas velocity, liquid cross-flow velocity, micro porous diameter and other parameters into account. Results indicate that the microbubble departure diameter decreases with the increasing liquid velocity, and increases with the increasing micro porous diameter and increasing gas velocity.


Author(s):  
Karine Loubière ◽  
Vincent Castaignède ◽  
Gilles Hébrard ◽  
Michel Roustan
Keyword(s):  

1998 ◽  
Vol 29 (6) ◽  
pp. 1219-1225 ◽  
Author(s):  
Manabu Iguchi ◽  
Yukio Terauchi ◽  
Shin-Ichiro Yokoya

2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Miguel A. Balzan ◽  
Franz Hernandez ◽  
Carlos F. Lange ◽  
Brian A. Fleck

The bubble formation frequency from a single-orifice nozzle subjected to the effects of a crossflowing liquid was investigated using high-speed shadowgraphy, combined with image analysis and signal processing techniques. The effects of the nozzle dimensions, orientation within the conduit, liquid cross-flow velocity, and gas mass flow rate were evaluated. Water and air were the working fluids. Existing expressions in the literature were compared to the experimental values obtained. The expressions showed modest agreement with the experimental mean average frequency magnitude. It was found that increasing the gas injection diameter could decrease the bubbling frequency approximately 12% until reaching a certain value (0.52 mm). Further increasing the nozzle dimensions increase the frequency by around 20%. Bubbling frequency is more sensitive to the liquid velocity where changes up to 63% occurred when the velocity was raised from 3.1 to 4.3 m/s. Increasing gas mass flow rates decreased the gas jet breakup frequency in all cases. This phenomenon was primarily attributed to changes in the bubbling mode from discrete bubbling to pulsating and jetting modes. The nozzle orientation plays a role in modifying the bubbling frequency, having a higher magnitude when oriented against gravity.


Sign in / Sign up

Export Citation Format

Share Document