Electric field gradients from single-crystal X-ray diffraction data

1985 ◽  
Vol 118 (3) ◽  
pp. 293-298 ◽  
Author(s):  
Jörgen Tegenfeldt ◽  
Kersti Hermansson
1996 ◽  
Vol 52 (6) ◽  
pp. 1023-1035 ◽  
Author(s):  
M. A. Spackman ◽  
P. G. Byrom

Model X-ray data sets, with and without the inclusion of experimental thermal motion parameters, have been computed via Fourier transformation of ab initio molecular electron densities for 12 different molecular crystals. These datasets were then analysed with three different multipole models of varying sophistication and, from the multipole functions, molecular dipole and second moments, as well as electric field gradients (EFG's), at each nuclear site were computed and compared with results obtained from the original ab initio wavefunctions. The results provide valuable insight into the reliability of these properties, extracted in the same way from experimental X-ray data. Not all molecular systems display identical trends, but a general pattern is discernible. Specifically, dipole moments are typically underestimated by a small but significant amount (~ 10–15%), the trace of the second moment tensor is well determined but overestimated by a few per cent and electric field gradients at protons are confirmed to be well within reach of a careful charge density analysis of X-ray diffraction data.


2012 ◽  
Vol 27 (2) ◽  
pp. 95-102
Author(s):  
Bozidar Cekic ◽  
Ana Umicevic ◽  
Valentin Ivanovski ◽  
Rongwei Hu ◽  
Cedomir Petrovic ◽  
...  

The perturbed angular correlation method was employed to study the temperature dependence of electric field gradients at the 181Ta probe in the polycrystalline Hf2Ni7 compound. The temperature evolution of the sample content was measured using high-temperature X-ray diffraction. To check the magnetic order of the sample, magnetization measurements and additional perturbed angular correlation measurements with externally applied magnetic field were performed. All obtained spectra showed no evidence of magnetic order of the Hf2Ni7 phase. Within the experimental resolution of the apparatus, the measured electric field gradients at 181Ta probe for the two inequivalent 181Hf/181Ta sites in the Hf2Ni7 compound appeared as one in the range of 78-944 K. A single quadrupole interaction implies that the electric field gradients at the two Hf sites must be quite similar. At 293 K, the measured quadrupole interaction parameters are ?Q = 433(1) MHz and ? = 0.300(4). An increase of the quadrupole frequency and a gradual rising of the asymmetry parameter were observed with increasing temperature. The high-temperature X-ray diffraction indicated a build up of HfO2 above 693 K.


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


1989 ◽  
Vol 161 (5-6) ◽  
pp. 598-606 ◽  
Author(s):  
G. Calestani ◽  
C. Rizzoli ◽  
M.G. Francesconi ◽  
G.D. Andreetti

Author(s):  
Anatoly A. Udovenko ◽  
Alexander A. Karabtsov ◽  
Natalia M. Laptash

A classical elpasolite-type structure is considered with respect to dynamically disordered ammonium fluoro-(oxofluoro-)metallates. Single-crystal X-ray diffraction data from high quality (NH4)3HfF7 and (NH4)3Ti(O2)F5 samples enabled the refinement of the ligand and cationic positions in the cubic Fm \bar 3 m (Z = 4) structure. Electron-density atomic profiles show that the ligand atoms are distributed in a mixed (split) position instead of 24e. One of the ammonium groups is disordered near 8c so that its central atom (N1) forms a tetrahedron with vertexes in 32f. However, a center of another group (N2) remains in the 4b site, whereas its H atoms (H2) occupy the 96k positions instead of 24e and, together with the H3 atom in the 32f position, they form eight spatial orientations of the ammonium group. It is a common feature of all ammonium fluoroelpasolites with orientational disorder of structural units of a dynamic nature.


2010 ◽  
Vol 95 (4) ◽  
pp. 655-658 ◽  
Author(s):  
S. Nazzareni ◽  
P. Comodi ◽  
L. Bindi ◽  
L. Dubrovinsky

Sign in / Sign up

Export Citation Format

Share Document