Free-radical reactions in glow and explosion of carbon monoxideoxygen mixtures

1986 ◽  
Vol 63 (1-2) ◽  
pp. 135-150 ◽  
Author(s):  
G. Von Elbe ◽  
Bernard Lewis
1963 ◽  
Vol 41 (10) ◽  
pp. 2492-2499 ◽  
Author(s):  
James N. Butler ◽  
Gerald J. Small

Methyl crotonate undergoes a homogeneous, unimolecular cis–trans isomerization in the gas phase at temperatures from 400 °C to 560 °C. The rate constant for the cis → trans reaction was found to be [Formula: see text]independent of pressure in the range from 0.1 mm to 10 mm. The equilibrium trans/cis ratio is approximately 4.5, independent of temperature, from 200 °C to 500 °C. Simultaneous free-radical reactions also occur, the most important of which are the isomerization to methyl vinylacetate, and the decomposition to give carbon dioxide and the various butene isomers. Side reactions gave carbon monoxide, methane, propylene, numerous other hydrocarbons, and various ethers.


CrystEngComm ◽  
2021 ◽  
Vol 23 (16) ◽  
pp. 3006-3014
Author(s):  
Wen Qian

A strategy combining classic and reactive molecular dynamics is applied to find the coupling effect of interfacial interactions and free radical reactions during the initial thermal decomposition of fluoropolymer-containing molecular systems.


1982 ◽  
Vol 60 (11) ◽  
pp. 1415-1424 ◽  
Author(s):  
H. B. Demopoulos ◽  
E. S. Flamm ◽  
M. L. Seligman ◽  
D. D. Pietronigro ◽  
J. Tomasula ◽  
...  

The hypothesis that pathologic free-radical reactions are initiated and catalyzed in the major central nervous system (CNS) disorders has been further supported by the current acute spinal cord injury work that has demonstrated the appearance of specific, cholesterol free-radical oxidation products. The significance of these products is suggested by the fact that: (i) they increase with time after injury; (ii) their production is curtailed with a steroidal antioxidant; (iii) high antioxidant doses of the steroidal antioxidant which curtail the development of free-radical product prevent tissue degeneration and permit functional restoration. The role of pathologic free-radical reactions is also inferred from the loss of ascorbic acid, a principal CNS antioxidant, and of extractable cholesterol. These losses are also prevented by the steroidal antioxidant. This model system is among others in the CNS which offer distinctive opportunities to study, in vivo, the onset and progression of membrane damaging free-radical reactions within well-defined parameters of time, extent of tissue injury, correlation with changes in membrane enzymes, and correlation with readily measurable in vivo functions.


ChemInform ◽  
2005 ◽  
Vol 36 (14) ◽  
Author(s):  
Chao-Ming Tseng ◽  
Yi-Lung Wu ◽  
Che-Ping Chuang

1993 ◽  
Vol 21 (3) ◽  
pp. 256S-256S ◽  
Author(s):  
PEDRO MONIZ-BARRETO ◽  
DAVID A. FELL

Sign in / Sign up

Export Citation Format

Share Document