Local interpolation with weight functions for variable-smoothness curve design

1991 ◽  
Vol 23 (8) ◽  
pp. 579-582 ◽  
Author(s):  
A.P. Pobegailo
Author(s):  
Jerome Hall ◽  
Daniel Turner

The conception, development, and adoption of early AASHO highway design criteria are documented. Examining the early efforts states used to select a design vehicle and develop horizontal curve design criteria illustrates why AASHO’s leadership was necessary. AASHO’s slow and somewhat haphazard criteria development, and the disparity from state to state, demonstrated the need for a national consensus in highway design parameters. AASHO’s role in providing these criteria is outlined through its initial development of policy booklets, followed by its 1954 publication of the landmark Blue Book. The processes by which nine states adopted the AASHO guidance are briefly reviewed. In several cases, the AASHO policy was embraced immediately, and in others it was accepted slowly as states clung to their independent design processes and only gradually updated their design criteria. A few simple conclusions are drawn about the development and adoption process, particularly as it may relate to tomorrow’s highway design criteria.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Fengbin Liu ◽  
Qiang Wu ◽  
Yumin Cheng

In this study, based on a nonsingular weight function, the improved element-free Galerkin (IEFG) method is presented for solving elastoplastic large deformation problems. By using the improved interpolating moving least-squares (IMLS) method to form the approximation function, and using Galerkin weak form based on total Lagrange formulation of elastoplastic large deformation problems to form the discretilized equations, which is solved with the Newton–Raphson iteration method, we obtain the formulae of the IEFG method for elastoplastic large deformation problems. In numerical examples, the influences of the penalty factor, scale parameter of influence domain and weight functions on the computational accuracy are analyzed, and the numerical solutions show that the IEFG method for elastoplastic large deformation problems has higher computational efficiency and accuracy.


Author(s):  
Luís Pinheiro Castro ◽  
Anabela Sousa Silva ◽  
Nguyen Minh Tuan
Keyword(s):  

2021 ◽  
Vol 240 (2) ◽  
pp. 809-875
Author(s):  
Marina A. Ferreira ◽  
Jani Lukkarinen ◽  
Alessia Nota ◽  
Juan J. L. Velázquez

AbstractWe study coagulation equations under non-equilibrium conditions which are induced by the addition of a source term for small cluster sizes. We consider both discrete and continuous coagulation equations, and allow for a large class of coagulation rate kernels, with the main restriction being boundedness from above and below by certain weight functions. The weight functions depend on two power law parameters, and the assumptions cover, in particular, the commonly used free molecular and diffusion limited aggregation coagulation kernels. Our main result shows that the two weight function parameters already determine whether there exists a stationary solution under the presence of a source term. In particular, we find that the diffusive kernel allows for the existence of stationary solutions while there cannot be any such solutions for the free molecular kernel. The argument to prove the non-existence of solutions relies on a novel power law lower bound, valid in the appropriate parameter regime, for the decay of stationary solutions with a constant flux. We obtain optimal lower and upper estimates of the solutions for large cluster sizes, and prove that the solutions of the discrete model behave asymptotically as solutions of the continuous model.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Qian Chen ◽  
Bicheng Yang

AbstractIn this article, by using weight functions, the idea of introducing parameters, the reverse extended Hardy–Hilbert integral inequality and the techniques of real analysis, a reverse Hardy–Hilbert-type integral inequality involving one derivative function and the beta function is obtained. The equivalent statements of the best possible constant factor related to several parameters are considered. The equivalent form, the cases of non-homogeneous kernel and some particular inequalities are also presented.


Author(s):  
Chunfu Xin ◽  
Zhenyu Wang ◽  
Chanyoung Lee ◽  
Pei-Sung Lin

Horizontal curves have been of great interest to transportation researchers because of expected safety hazards for motorcyclists. The impacts of horizontal curve design on motorcycle crash injuries are not well documented in previous studies. The current study aimed to investigate and to quantify the effects of horizontal curve design and associated factors on the injury severity of single-motorcycle crashes with consideration of the issue of unobserved heterogeneity. A mixed-effects logistic model was developed on the basis of 2,168 single-motorcycle crashes, which were collected on 8,597 horizontal curves in Florida for a period of 11 years (2005 to 2015). Four normally distributed random parameters (moderate curves, reverse curves, older riders, and male riders) were identified. The modeling results showed that sharp curves (radius <1,500 ft) compared with flat curves (radius ≥4,000 ft) tended to increase significantly the probability of severe injury (fatal or incapacitating injury) by 7.7%. In total, 63.8% of single-motorcycle crashes occurring on reverse curves are more likely to result in severe injury, and the remaining 26.2% are less likely to result in severe injury. Motorcyclist safety compensation behaviors (psychologically feeling safe, and then riding aggressively, or vice versa) may result in counterintuitive effects (e.g., vegetation and paved medians, full-access-controlled roads, and pavement conditions) or random parameters (e.g., moderate curve and reverse curve). Other significant factors include lighting conditions (darkness and darkness with lights), weekends, speed or speeding, collision type, alcohol or drug impairment, rider age, and helmet use.


Sign in / Sign up

Export Citation Format

Share Document