A computer program for determining the complete reaction amplitude for two-body nuclear reactions involving zero-spin particles

1987 ◽  
Vol 46 (1) ◽  
pp. 155-178 ◽  
Author(s):  
Z. Basrak
1976 ◽  
Vol 32 ◽  
pp. 169-182
Author(s):  
B. Kuchowicz

SummaryIsotopic shifts in the lines of the heavy elements in Ap stars, and the characteristic abundance pattern of these elements point to the fact that we are observing mainly the products of rapid neutron capture. The peculiar A stars may be treated as the show windows for the products of a recent r-process in their neighbourhood. This process can be located either in Supernovae exploding in a binary system in which the present Ap stars were secondaries, or in Supernovae exploding in young clusters. Secondary processes, e.g. spontaneous fission or nuclear reactions with highly abundant fission products, may occur further with the r-processed material in the surface of the Ap stars. The role of these stars to the theory of nucleosynthesis and to nuclear physics is emphasized.


1978 ◽  
Vol 48 ◽  
pp. 287-293 ◽  
Author(s):  
Chr. de Vegt ◽  
E. Ebner ◽  
K. von der Heide

In contrast to the adjustment of single plates a block adjustment is a simultaneous determination of all unknowns associated with many overlapping plates (star positions and plate constants etc. ) by one large adjustment. This plate overlap technique was introduced by Eichhorn and reviewed by Googe et. al. The author now has developed a set of computer programmes which allows the adjustment of any set of contemporaneous overlapping plates. There is in principle no limit for the number of plates, the number of stars, the number of individual plate constants for each plate, and for the overlapping factor.


Author(s):  
D.M. Vanderwalker

There is a fundamental interest in electrochemical fusion of deuterium in palladium and titanium since its supposed discovery by Fleischmann and Pons. Their calorimetric experiments reveal that a large quantity of heat is released by Pd after hours in a cell, suggesting fusion occurs. They cannot explain fusion by force arguments, nor can it be an exothermic reaction on the formation of deuterides because a smaller quantity of heat is released. This study examines reactions of deuterium in titanium.Both iodide titanium and 99% pure titanium samples were encapsulated in vacuum tubes, annealed for 2h at 800 °C. The Ti foils were charged with deuterium in a D2SO4 D2O solution at a potential of .45V with respect to a calomel reference junction. Samples were ion beam thinned for transmission electron microscopy. The TEM was performed on the JEOL 200CX.The structure of D charged titanium is α-Ti with hexagonal and fee deuterides.


Author(s):  
Makoto Shiojiri ◽  
Toshiyuki Isshiki ◽  
Tetsuya Fudaba ◽  
Yoshihiro Hirota

In hexagonal Se crystal each atom is covalently bound to two others to form an endless spiral chain, and in Sb crystal each atom to three others to form an extended puckered sheet. Such chains and sheets may be regarded as one- and two- dimensional molecules, respectively. In this paper we investigate the structures in amorphous state of these elements and the crystallization.HRTEM and ED images of vacuum-deposited amorphous Se and Sb films were taken with a JEM-200CX electron microscope (Cs=1.2 mm). The structure models of amorphous films were constructed on a computer by Monte Carlo method. Generated atoms were subsequently deposited on a space of 2 nm×2 nm as they fulfiled the binding condition, to form a film 5 nm thick (Fig. 1a-1c). An improvement on a previous computer program has been made as to realize the actual film formation. Radial distribution fuction (RDF) curves, ED intensities and HRTEM images for the constructed structure models were calculated, and compared with the observed ones.


Author(s):  
R. Gotthardt ◽  
A. Horsewell ◽  
F. Paschoud ◽  
S. Proennecke ◽  
M. Victoria

Fusion reactor materials will be damaged by an intense field of energetic neutrons. There is no neutron source of sufficient intensity at these energies available at present, so the material properties are being correlated with those obtained in irradiation with other irradiation sorces. Irradiation with 600 MeV protons produces both displacement damage and impurities due to nuclear reactions. Helium and hydrogen are produced as gaseous impurities. Other metallic impurities are also created . The main elements of the microstructure observed after irradiation in the PIREX facility, are described in the following paragraphs.A. Defect clusters at low irradiation doses: In specimens irradiated to very low doses (1021-1024 protons.m-2), so that there is no superimposition of contrast, small defect clusters have been observed by the weak beam technique. Detailed analysis of the visible contrast (>0.5 nm diameter) revealed the presence of stacking fault tetrahedra, dislocation loops and a certain number of unidentified clusters . Typical results in Cu and Au are shown in Fig. 1.


1968 ◽  
Vol 111 (1) ◽  
pp. 392-416 ◽  
Author(s):  
K DIETRICH ◽  
K HARA

Sign in / Sign up

Export Citation Format

Share Document