The stability analysis of difference schemes by numerical solution of the generalised Routh-Hurwltz problem

1987 ◽  
Vol 43 (2) ◽  
pp. 209-216 ◽  
Author(s):  
V.G. Ganzha ◽  
E.V. Vorozhtsov
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Abdon Atangana ◽  
Dumitru Baleanu

A kind of parabolic equation was extended to the concept of fractional calculus. The resulting equation is, however, difficult to handle analytically. Therefore, we presented the numerical solution via the explicit and the implicit schemes. We presented together the stability and convergence of this time-fractional parabolic equation with two difference schemes. The explicit and the implicit schemes in this case are stable under some conditions.


Author(s):  
Nur Auni Baharum ◽  
Zanariah Abdul Majid ◽  
Norazak Senu

The performance of the numerical computation based on the diagonally implicit multistep block method for solving Volterra integrodifferential equations (VIDE) of the second kind has been analyzed. The numerical solutions of VIDE will be computed at two points concurrently using the proposed numerical method and executed in the predictor-corrector (PECE) mode. The strategy to obtain the numerical solution of an integral part is discussed and the stability analysis of the diagonally implicit multistep block method was investigated. Numerical results showed the competence of diagonally implicit multistep block method when solving Volterra integrodifferential equations compared to the existing methods.


2017 ◽  
Vol 29 (2) ◽  
pp. 143-151 ◽  
Author(s):  
TMAK Azad ◽  
LS Andallah

The paper studies stability analysis for two standard finite difference schemes FTBSCS (forward time backward space and centered space) and FTCS (forward time and centered space). One-dimensional advection diffusion equation is solved by using the schemes with appropriate initial and boundary conditions. Numerical experiments are performed to verify the stability results obtained in this study. It is found that FTCS scheme gives better point-wise solutions than FTBSCS in terms of time step selection.Bangladesh J. Sci. Res. 29(2): 143-151, December-2016


2020 ◽  
pp. 002029402095910
Author(s):  
Jie Xu ◽  
Zhanbei Tong ◽  
Wengen Gao

Stochastic disturbances play a profound problem in the power system, which have an important impact on the stability of the power system. The paper proposes the stability analysis of stochastic disturbance bounded value of linear power system, and presents that the stability of power system has bounded value under stochastic disturbance and additional disturbance, and gives the analysis process in combination with stochastic differentiation. The equation theory proposes a numerical solution based on mean stability to calculate the boundedness of infinite systems under the influence of stochastic disturbance and additional disturbance. The results show that the system has bounded value stability under the disturbance.


2005 ◽  
Vol 5 (1) ◽  
pp. 3-50 ◽  
Author(s):  
Alexei A. Gulin

AbstractA review of the stability theory of symmetrizable time-dependent difference schemes is represented. The notion of the operator-difference scheme is introduced and general ideas about stability in the sense of the initial data and in the sense of the right hand side are formulated. Further, the so-called symmetrizable difference schemes are considered in detail for which we manage to formulate the unimprovable necessary and su±cient conditions of stability in the sense of the initial data. The schemes with variable weight multipliers are a typical representative of symmetrizable difference schemes. For such schemes a numerical algorithm is proposed and realized for constructing stability boundaries.


2019 ◽  
Vol 1 (1) ◽  
pp. 49-60
Author(s):  
Simon Heru Prassetyo ◽  
Ganda Marihot Simangunsong ◽  
Ridho Kresna Wattimena ◽  
Made Astawa Rai ◽  
Irwandy Arif ◽  
...  

This paper focuses on the stability analysis of the Nanjung Water Diversion Twin Tunnels using convergence measurement. The Nanjung Tunnel is horseshoe-shaped in cross-section, 10.2 m x 9.2 m in dimension, and 230 m in length. The location of the tunnel is in Curug Jompong, Margaasih Subdistrict, Bandung. Convergence monitoring was done for 144 days between February 18 and July 11, 2019. The results of the convergence measurement were recorded and plotted into the curves of convergence vs. day and convergence vs. distance from tunnel face. From these plots, the continuity of the convergence and the convergence rate in the tunnel roof and wall were then analyzed. The convergence rates from each tunnel were also compared to empirical values to determine the level of tunnel stability. In general, the trend of convergence rate shows that the Nanjung Tunnel is stable without any indication of instability. Although there was a spike in the convergence rate at several STA in the measured span, that spike was not replicated by the convergence rate in the other measured spans and it was not continuous. The stability of the Nanjung Tunnel is also confirmed from the critical strain analysis, in which most of the STA measured have strain magnitudes located below the critical strain line and are less than 1%.


Sign in / Sign up

Export Citation Format

Share Document