The pitting and crevice corrosion of 304 stainless steel in phosphate-borate buffer containing sodium chloride

1992 ◽  
Vol 33 (10) ◽  
pp. 1645-1651 ◽  
Author(s):  
J. Morales ◽  
P. Esparza ◽  
R. Salvarezza ◽  
S. Gonzalez
1999 ◽  
Vol 556 ◽  
Author(s):  
J. C. Farmer ◽  
R. D. Mccright ◽  
J. C. Estill ◽  
S. R. Gordon

AbstractAlloy 22 [UNS N06022] is now being considered for construction of high level waste containers to be emplaced at Yucca Mountain and elsewhere. In essence, this alloy is 20.0–22.5% Cr, 12.5–14.5% Mo, 2.0–6.0% Fe, 2.5–3.5% W, with the balance being Ni. Other impurity elements include P, Si, S, Mn, Co and V. Cobalt may be present at a maximum concentration of 2.5%. Detailed mechanistic models have been developed to account for the corrosion of Alloy 22 surfaces in crevices that will inevitably form. Such occluded areas experience substantial decreases in pH, with corresponding elevations in chloride concentration. Experimental work has been undertaken to validate the crevice corrosion model, including parallel studies with 304 stainless steel.


CORROSION ◽  
10.5006/3324 ◽  
2020 ◽  
Vol 76 (4) ◽  
pp. 424-435
Author(s):  
Abinaya Kamaraj ◽  
Johann Wilhelm Erning

The susceptibility of Type 304 stainless steel (SS) to crevice corrosion upon contacting with electrochemically active fluids was investigated using exposure tests and stepwise potentiostatic polarization. Crevice materials made of 304 SS and polyether ether ketone (PEEK) were focused on in this study. The combined influence of oxidant and chloride concentration on crevice corrosion was examined in detail in the two types of crevice combinations (304 SS-to-PEEK and 304 SS-to-304 SS). The 304 SS specimens were strongly susceptible to crevice corrosion when coupled with 304 SS. Even at a low concentration of 5 mg/L free chlorine and 150 mg/L chloride, which is below nominal dilutions in beverage industries, the examined specimens underwent crevice corrosion in both crevices. The effect of water composition on crevice corrosion was also studied, indicating high susceptibility of 304 SS to crevice corrosion in low pH (pH ≤ 5) solutions. The corroded surface morphology was analyzed using scanning electron microscope, energy dispersive x-ray, and confocal microscope.


Author(s):  
A.S. Khanna ◽  
K. Sridhar ◽  
M.B. Deshmukh

Abstract Stainless Steels are required for many applications for ship building as well as for offshore structures such as oil exploration. AISI type 304 stainless steel is not very suitable for such applications as it has a strong tendency for pitting and crevice corrosion. Even type 316 and 317 stainless steels which have respectively 2.5 and 3.5% Mo are not very effective in these environments. Commercially available stainless steels, viz., Avesta 254 SMO is being employed for such applications because of its strong resistance to pitting and crevice corrosion. This is mainly because of high Mo concentration (6.5%). Such steels are not only costly but are prone to form deleterious phases such as delta ferrite and sigma during welding or other heat treatment operations. Hence, an alternative technique to restrict Mo at the surface is needed. In the present work, surface alloys consisting of an austenitic stainless steel with Mo content as high as 10-12% have been formed on stainless steel type 304 substrates. These steels show enhanced passivity and strong resistance to pitting corrosion.


Sign in / Sign up

Export Citation Format

Share Document