Cell cycle changes during neural crest cell differentiation in vitro

1976 ◽  
Vol 49 (1) ◽  
pp. 66-79 ◽  
Author(s):  
Gerald D. Maxwell
1981 ◽  
Vol 82 (1) ◽  
pp. 86-94 ◽  
Author(s):  
Jeanne Loring ◽  
Bengt Glimelius ◽  
Carol Erickson ◽  
James A. Weston

2018 ◽  
Vol 11 (12) ◽  
pp. dmm035097 ◽  
Author(s):  
Maria R. Replogle ◽  
Virinchipuram S. Sreevidya ◽  
Vivian M. Lee ◽  
Michael D. Laiosa ◽  
Kurt R. Svoboda ◽  
...  

2013 ◽  
Vol 5 (2) ◽  
pp. a008326-a008326 ◽  
Author(s):  
S. Bhatt ◽  
R. Diaz ◽  
P. A. Trainor

2014 ◽  
Vol 127 (5) ◽  
pp. e1-e1
Author(s):  
D. A. Ridenour ◽  
R. McLennan ◽  
J. M. Teddy ◽  
C. L. Semerad ◽  
J. S. Haug ◽  
...  

Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2181-2189 ◽  
Author(s):  
B.J. Eickholt ◽  
S.L. Mackenzie ◽  
A. Graham ◽  
F.S. Walsh ◽  
P. Doherty

Collapsin-1 belongs to the Semaphorin family of molecules, several members of which have been implicated in the co-ordination of axon growth and guidance. Collapsin-1 can function as a selective chemorepellent for sensory neurons, however, its early expression within the somites and the cranial neural tube (Shepherd, I., Luo, Y., Raper, J. A. and Chang, S. (1996) Dev. Biol. 173, 185–199) suggest that it might contribute to the control of additional developmental processes in the chick. We now report a detailed study on the expression of collapsin-1 as well as on the distribution of collapsin-1-binding sites in regions where neural crest cell migration occurs. collapsin-1 expression is detected in regions bordering neural crest migration pathways in both the trunk and hindbrain regions and a receptor for collapsin-1, neuropilin-1, is expressed by migrating crest cells derived from both regions. When added to crest cells in vitro, a collapsin-1-Fc chimeric protein induces morphological changes similar to those seen in neuronal growth cones. In order to test the function of collapsin-1 on the migration of neural crest cells, an in vitro assay was used in which collapsin-1-Fc was immobilised in alternating stripes consisting of collapsin-Fc/fibronectin versus fibronectin alone. Explanted neural crest cells derived from both trunk and hindbrain regions avoided the collapsin-Fc-containing substratum. These results suggest that collapsin-1 signalling can contribute to the patterning of neural crest cell migration in the developing chick.


Sign in / Sign up

Export Citation Format

Share Document