The role of cyclic nucleotides and cell agglomeration in postaggregative enzyme synthesis in Dictyostelium discoideum

1978 ◽  
Vol 63 (2) ◽  
pp. 412-420 ◽  
Author(s):  
Chris Town ◽  
Julian Gross
1982 ◽  
Vol 93 (3) ◽  
pp. 265-267
Author(s):  
M. Ya. Maizelis ◽  
A. L. Zabludovskii ◽  
S. N. Shikhov

1991 ◽  
Vol 115 (5) ◽  
pp. 1267-1274 ◽  
Author(s):  
S Eliott ◽  
P H Vardy ◽  
K L Williams

While the role of myosin II in muscle contraction has been well characterized, less is known about the role of myosin II in non-muscle cells. Recent molecular genetic experiments on Dictyostelium discoideum show that myosin II is necessary for cytokinesis and multicellular development. Here we use immunofluorescence microscopy with monoclonal and polyclonal antimyosin antibodies to visualize myosin II in cells of the multicellular D. discoideum slug. A subpopulation of peripheral and anterior cells label brightly with antimyosin II antibodies, and many of these cells display a polarized intracellular distribution of myosin II. Other cells in the slug label less brightly and their cytoplasm displays a more homogeneous distribution of myosin II. These results provide insight into cell motility within a three-dimensional tissue and they are discussed in relation to the possible roles of myosin II in multicellular development.


2003 ◽  
Vol 1 (1) ◽  
pp. 25-32 ◽  
Author(s):  
G. Spoto ◽  
A. Contento ◽  
M. Di Nicola ◽  
G. Bianchi ◽  
C. Di Giulio ◽  
...  

Phosphodiesterase activity was tested on homogenized eyes of young and old rats kept in hypoxic and hyperoxic conditions, with the aim of correlating any difference in PDE activity with aging and variations in atmospheric oxygen contents. The activities of the two enzymes, cAMP phosphodiesterase (cAMP-PDE) and cGMP phosphodiesterase (cGMP-PDE), were tested. Phosphodiesterases seem to be particularly susceptible to variations in oxygen tension, suggesting an important role of cyclic nucleotides in cellular adaptive processes. Particularly, cAMP-PDE activity increases lightly both in hypoxic and hyperoxic conditions in young and old rats. For cGMP-PDE activity of young rats, a similar behaviour to cAMP-PDE activity is observed with a similar increase in hypoxic and hyperoxic conditions respect to the control rats. Instead old rats seem to be quite insensible to hypoxia, while they show a fair increase in cGMP-PDE activity in the case of hyperoxia. The second messengers cAMP and cGMP play important roles in mediating the biological effects of a wide variety of first messengers. The intracellular levels of cyclic nucleotides depend upon rates of synthesis and degradation, actuated, respectively, by cyclases and phosphodiesterases (PDEs). Therefore, PDEs seem to play an important role in a wide variety of physiological processes.


2000 ◽  
Vol 279 (5) ◽  
pp. H2077-H2084 ◽  
Author(s):  
David B. Pearse ◽  
Patrice M. Becker

We previously found that increased intravascular pressure decreased ischemic lung injury by a nitric oxide (NO)-dependent mechanism (Becker PM, Buchanan W, and Sylvester JT. J Appl Physiol 84: 803–808, 1998). To determine the role of cyclic nucleotides in this response, we measured the reflection coefficient for albumin (ςalb), fluid flux ( J˙), cGMP, and cAMP in ferret lungs subjected to either 45 min (“short”; n = 7) or 180 min (“long”) of ventilated ischemia. Long ischemic lungs had “low” (1–2 mmHg, n = 8) or “high” (7–8 mmHg, n = 6) vascular pressure. Other long low lungs were treated with the NO donor ( Z)-1-[ N-(3-ammoniopropyl)- N-( n-propyl)amino]diazen-1-ium-1,2-diolate (PAPA-NONOate; 5 × 10−4 M, n = 6) or 8-bromo-cGMP (5 × 10−4 M, n = 6). Compared with short ischemia, long low ischemia decreased ςalb (0.23 ± 0.04 vs. 0.73 ± 0.08; P < 0.05) and increased J˙ (1.93 ± 0.26 vs. 0.58 ± 0.22 ml · min−1 · 100 g−1; P < 0.05). High pressure prevented these changes. Lung cGMP decreased by 66% in long compared with short ischemia. Lung cAMP did not change. PAPA-NONOate and 8-bromo-cGMP increased lung cGMP, but only 8-bromo-cGMP decreased permeability. These results suggest that ischemic vascular injury was, in part, mediated by a decrease in cGMP. Increased vascular pressure prevented injury by a cGMP-independent mechanism that could not be mimicked by administration of exogenous NO.


1985 ◽  
Vol 100 (3) ◽  
pp. 715-720 ◽  
Author(s):  
C Klein ◽  
J Lubs-Haukeness ◽  
S Simons

Stimulation, within 1 min after cAMP stimulation, of aggregation-competent Dictyostelium discoideum amebae was found to cause a rapid (within 1 min) modification of the cell's surface cAMP receptor. The modified receptor migrated on SDS PAGE as a 47,000-mol-wt protein, as opposed to a 45,000-mol-wt protein labeled on unstimulated cells. The length of time this modified receptor could be detected depended upon the strength of the cAMP stimulus: 3-4 min after treatment with 10(-7) M cAMP, cells no longer possessed the 47,000-mol-wt form of the cAMP receptor. Instead, the 45,000-mol-wt form was present. Stimulation of cells with 10(-5) M cAMP, however, resulted in the persistent (over 15 min) expression of the modified receptor. The time course, concentration dependence, and specificity of stimulus for this cAMP-induced shift in the cAMP receptor were found to parallel the cAMP-stimulated phosphorylation of a 47,000-mol-wt protein. In addition, both phenomena were shown to occur in the absence of endogenous cAMP synthesis. The possibility that the cAMP receptor is phosphorylated in response to cAMP stimulation, and the role of this event in cell desensitization, are discussed.


Pharmacology ◽  
1996 ◽  
Vol 53 (5) ◽  
pp. 296-301 ◽  
Author(s):  
Manuel S&aacute;nchez ◽  
Luis Men&eacute;ndez. ◽  
Maria Jos&eacute; Garcia de Boto ◽  
Agust&iacute;n Hidalgo

1977 ◽  
pp. 323-344 ◽  
Author(s):  
J. P. Giroud ◽  
G. P. Velo ◽  
D. A. Willoughby
Keyword(s):  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Simon Yuan Wang ◽  
Elizabeth Ann Pollina ◽  
I-Hao Wang ◽  
Lindsay Kristina Pino ◽  
Henry L. Bushnell ◽  
...  

Abstract Background The evolution of multicellularity is a critical event that remains incompletely understood. We use the social amoeba, Dictyostelium discoideum, one of the rare organisms that readily transits back and forth between both unicellular and multicellular stages, to examine the role of epigenetics in regulating multicellularity. Results While transitioning to multicellular states, patterns of H3K4 methylation and H3K27 acetylation significantly change. By combining transcriptomics, epigenomics, chromatin accessibility, and orthologous gene analyses with other unicellular and multicellular organisms, we identify 52 conserved genes, which are specifically accessible and expressed during multicellular states. We validated that four of these genes, including the H3K27 deacetylase hdaD, are necessary and that an SMC-like gene, smcl1, is sufficient for multicellularity in Dictyostelium. Conclusions These results highlight the importance of epigenetics in reorganizing chromatin architecture to facilitate multicellularity in Dictyostelium discoideum and raise exciting possibilities about the role of epigenetics in the evolution of multicellularity more broadly.


Sign in / Sign up

Export Citation Format

Share Document