camp synthesis
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 8)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Kaley M. Wilburn ◽  
Christine R. Montague ◽  
Bo Qin ◽  
Ashley K. Woods ◽  
Melissa S. Love ◽  
...  

There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3’, 5’-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb. Similarly, using a complementary genetic approach that induces bacterial cAMP synthesis independent of Rv1625c, we demonstrate that inducing cAMP synthesis is sufficient to inhibit cholesterol utilization in Mtb. Although the physiological roles of individual adenylyl cyclase enzymes in Mtb are largely unknown, here we demonstrate that the transmembrane region of Rv1625c is required for cholesterol metabolism. Finally, in this work the pharmacokinetic properties of Rv1625c agonists are optimized, producing an orally-available Rv1625c agonist that impairs Mtb pathogenesis in infected mice. Collectively, this work demonstrates a novel role for Rv1625c and cAMP signaling in controlling cholesterol metabolism in Mtb and establishes that cAMP signaling can be pharmacologically manipulated for the development of new antibiotic strategies.


2021 ◽  
Author(s):  
Heinz Gerd Koerschen ◽  
Hussein Hamzeh ◽  
Rene Pascal ◽  
Luis Alvarez ◽  
Wolfgang Boenigk ◽  
...  

The reaction of CO2 with H2O to form HCO3- and H+ is one of the most important chemical equilibria in cells. In mammalian sperm, a soluble adenylyl cyclase (sAC) serves as cellular HCO3- sensor that conveys the equilibrium state via cAMP synthesis to cAMP-signaling molecules. The function of sAC and cAMP in non-mammalian sperm is largely unknown. Here, we identify sAC orthologs in sea urchin and salmon sperm that, surprisingly, are activated by alkaline pH rather than HCO3-. Two amino-acid residues required for HCO3- binding of mammalian sAC are lacking in pH-regulated sAC. Orthologs identified in ten other phyla are also lacking either one of these key residues, suggesting that pH control is widespread among non-mammalian metazoan. The pH-sensitive sAC controls several functions of sperm from external fertilizers. Upon spawning, alkalization triggers cAMP synthesis and, thereby, activates motility of quiescent sperm. Egg-derived chemoattractants also alkalize sperm and elevate cAMP, which then-modulates pacemaker HCN channels to trigger a chemotactic Ca2+ response. Finally, the sAC and the voltage- and cAMP-activated Na+/H+ exchanger sNHE mutually control each other. A picture of evolutionary significance is emerging: motility and sensory signaling of sperm from both internal and external fertilizers rely on cAMP, yet, their sAC is regulated by HCO3- or pHi, respectively. Acidification of aquatic habitats due to climate change may adversely affect pH-sensing by sAC and thereby sexual reproduction in the sea.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A767-A768
Author(s):  
Chiaki Kashino ◽  
Toru Hasegawa ◽  
Yasuhiro Nakano ◽  
Nahoko Iwata ◽  
Koichiro Yamamoto ◽  
...  

Abstract Glucocorticoid receptor (GR) are known to be expressed in the ovary and glucocorticoids are shown to exert direct effects on granulosa cell functions. In the clinical setting, menstrual abnormality, amenorrhea and hypermenorrhea can be shown in patients with glucocorticoid excess. On the other hand, glucocorticoids can also be used for the treatment of PCOS with hyperandrogenism. However, the effects of glucocorticoids on the reproductive system have not been fully elucidated. In the present study, we investigated the influence of glucocorticoids on follicular steroidogenesis using primary culture of rat granulosa cells, by focusing on the ovarian bone morphogenetic proteins (BMPs) acting as a luteinizing inhibitor. Granulosa cells isolated from female immature rats were treated with follicle-stimulating hormone (FSH) in the presence of dexamethasone (Dex) in serum-free conditions. After treatment with Dex for 48 h, the changes of estradiol (E2) and progesterone (P4) production and cAMP synthesis induced by FSH treatments were measured by ELISA. Total RNAs of granulosa cells treated with FSH, Dex and BMPs were extracted and mRNA levels of steroidogenetic factors and enzymes, BMP receptors and Id-1 were quantified by real-time RT-PCR. Phosphorylation of Smad1/5/9 induced by BMPs was evaluated by Western blotting using cell lysates in the presence or absence of Dex. As a result, it was revealed that Dex treatment decreased FSH-induced E2 production by granulosa cells. In accordance with the steroid results, Dex suppressed FSH-induced P450arom mRNA expression as well as FSH-induced cAMP synthesis by granulosa cells. By contrast, Dex treatment augmented FSH-induced P4 production by granulosa cells in a concentration-dependent manner. Dex treatment was found to enhance basal and FSH-induced mRNA levels of P4-synthetic enzymes including P450scc and 3βHSD. Of note, Dex treatment activated the BMP target gene Id-1 transcription and Smad1/5/9 phosphorylation, in particular, induced by BMP-15 among various BMP ligands including BMP-2, -4, -6, -7, -9 and -15. It was also revealed that Dex treatment increased mRNA levels of ALK-6, a type-I receptor for BMP-15, and that BMP-15 treatment in turn upregulated GR mRNA levels expressed by granulosa cells. Given that BMP-15 acts as an inhibitor for P4 production by suppressing FSH-receptor actions, it was suggested that glucocorticoid is functionally linked to the enhancement of endogenous BMP-15, leading to the negative feedback toward the P4 overproduction induced by FSH and Dex in granulosa cells. Collectively, it was revealed that glucocorticoids elicit differential effects on the ovarian steroidogenesis of E2 and P4, in which GR and BMP-15 actions are mutually enhanced in granulosa cells.


Author(s):  
Madhu Chauhan ◽  
Ancizar Betancourt ◽  
Meena Balakrishnan ◽  
Akansha Mishra ◽  
Karin Fox ◽  
...  

ABSTRACT Calcitonin gene-related peptide (CALCB), adrenomedullin (ADM), and adrenomedullin2 (ADM2) are hypotensive peptides that belong to CALCB family of peptides. Goal of this study was to identify the effect of fms-like tyrosine kinase (sFLT-1) and angiotensin2 (Ang2) on the function of these peptides in OA smooth muscle cells (OASMC) and assess the sensitivity of OA for these peptides in preeclampsia (PE) and normotensive pregnancy. Methods: Peptide function was assessed by Cyclic adenosine monophosphate (cAMP) assays and wire myograph; mRNA expression by Polymerase chain reaction (PCR) and protein-protein interaction by proximity ligation assay and co-immunoprecipitation. Findings: All three peptides increased cAMP synthesis in the order of efficacy CALCB > ADM = ADM2 and vascular endothelial growth factor (VEGF) mRNA in OASMC (P < 0.05); sFLT-1 mediated decrease in cAMP synthesis (P < 0.05) is differentially rescued by all three CALCB family peptides in OASMC (P < 0.005); sFLT-1 decreased receptor activity-modifying protein (RAMP)1 and RAMP2 mRNA expression (P < 0.05); Ang2 decreased the expression of calcitonin-receptor-like receptor and RAMP1 mRNA and desensitized CALCB and ADM2 receptors in OASMC (P < 0.05); sFLT-1 increased RAMP1and Ang2 type 1 receptor (AT1R) interaction in OASMC which is inhibited in presence of all three peptides; and all three peptides relax OA in PE with enhanced ADM2 response (P < 0.05). Conclusion: sFLT-1 and Ang2 impair OASMC mediated functional responses of CALCB family peptides which can be inhibited by respective peptide treatment. The sensitivity of OA for CALCB, ADM, and ADM2-mediated relaxation is retained in PE.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Paz Prada ◽  
Arsalan U. Syed ◽  
Gopireddy R. Reddy ◽  
Miguel Martín-Aragón Baudel ◽  
Víctor A. Flores-Tamez ◽  
...  

Abstract The L-type Ca2+ channel CaV1.2 is essential for arterial myocyte excitability, gene expression and contraction. Elevations in extracellular glucose (hyperglycemia) potentiate vascular L-type Ca2+ channel via PKA, but the underlying mechanisms are unclear. Here, we find that cAMP synthesis in response to elevated glucose and the selective P2Y11 agonist NF546 is blocked by disruption of A-kinase anchoring protein 5 (AKAP5) function in arterial myocytes. Glucose and NF546-induced potentiation of L-type Ca2+ channels, vasoconstriction and decreased blood flow are prevented in AKAP5 null arterial myocytes/arteries. These responses are nucleated via the AKAP5-dependent clustering of P2Y11/ P2Y11-like receptors, AC5, PKA and CaV1.2 into nanocomplexes at the plasma membrane of human and mouse arterial myocytes. Hence, data reveal an AKAP5 signaling module that regulates L-type Ca2+ channel activity and vascular reactivity upon elevated glucose. This AKAP5-anchored nanocomplex may contribute to vascular complications during diabetic hyperglycemia.


2020 ◽  
Vol 318 (6) ◽  
pp. L1248-L1260 ◽  
Author(s):  
Kentaro Mizuta ◽  
Haruka Sasaki ◽  
Yi Zhang ◽  
Atsuko Matoba ◽  
Charles W. Emala

Emerging evidence suggests that gut microbiota-derived short-chain fatty acids (SCFAs; acetate, propionate, and butyrate) are important modulators of the inflammatory state in diseases such as asthma. However, the functional expression of the Gi protein-coupled free fatty acid receptors (FFAR2/GPR43 and FFAR3/GPR41) has not been identified on airway smooth muscle (ASM). Classically, acute activation of Gi-coupled receptors inhibits cyclic AMP (cAMP) synthesis, which impairs ASM relaxation and can also induce crosstalk between Gi- and Gq-signaling pathways, potentiating increases in intracellular Ca2+ concentration ([Ca2+]i), favoring ASM contraction. In contrast, chronic activation of Gi-coupled receptors can sensitize adenylyl cyclase resulting in increased cAMP synthesis favoring relaxation. We questioned whether the Gi-coupled FFAR2 or FFAR3 is expressed in human ASM, whether they modulate cAMP and [Ca2+]i, and whether SCFAs modulate human ASM tone. We detected the protein expression of FFAR3 but not FFAR2 in native human ASM and primary cultured human airway smooth muscle (HASM) cells. In HASM cells, acute activation of FFAR3 with SCFAs inhibited forskolin-stimulated cAMP accumulation, but chronic activation did not sensitize cAMP synthesis. SCFAs induced [Ca2+]i increases that were attenuated by pertussis toxin, gallein, U73122, or xestospongin C. Acute treatment with SCFAs potentiated acetylcholine-stimulated [Ca2+]i increases and stress fiber formation in cells and contraction of ex vivo human airway tissues. In contrast, chronic pretreatment of human ASM with propionate did not potentiate airway relaxation. Together, these findings demonstrate that FFAR3 is expressed in human ASM and contributes to ASM contraction via reduced cAMP and increased [Ca2+]i.


2019 ◽  
Vol 141 ◽  
pp. 331-342 ◽  
Author(s):  
John T. Szilagyi ◽  
Gabriella M. Composto-Wahler ◽  
Laurie B. Joseph ◽  
Bingbing Wang ◽  
Todd Rosen ◽  
...  

Pharmacology ◽  
2019 ◽  
Vol 104 (5-6) ◽  
pp. 377-382
Author(s):  
Pawel Kozielewicz ◽  
Gillian Grafton ◽  
Joanna J. Sajkowska-Kozielewicz ◽  
Nicholas M. Barnes

GPR61 is an orphan receptor that belongs to Class A of G-protein-coupled receptors. It has been reported that GPR61 has a constitutive activity and couples to Gαs. In the present study, we characterized GPR61 function and ligand binding by experimental and molecular docking studies. We demonstrated that heterologous expression of GPR61 in HEK293 cells enhanced the cAMP synthesis response to forskolin, whereas the basal cAMP synthesis was unaffected. 5-(Nonyloxy)tryptamine inhibited forskolin-stimulated cAMP production in GPR61-expressing HEK293 cells. These studies highlight that the intrinsic activity of this receptor is only measurable following its synergy with Gαs.


2018 ◽  
Vol 294 (4) ◽  
pp. 1095-1103 ◽  
Author(s):  
Nyla Naim ◽  
Alex D. White ◽  
Jeff M. Reece ◽  
Mamta Wankhede ◽  
Xuefeng Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document