Simple 2-D models for melt extraction at mid-ocean ridges and island arcs

1987 ◽  
Vol 83 (1-4) ◽  
pp. 137-152 ◽  
Author(s):  
Marc Spiegelman ◽  
Dan McKenzie
1989 ◽  
Vol 202 ◽  
pp. 577-594 ◽  
Author(s):  
John R. Lister ◽  
Ross C. Kerr

The low-Reynolds-number stability of a region of buoyant fluid surrounded by denser fluid is analysed in two situations. In the first study, the buoyant fluid lies in a thin layer sandwiched between two denser and much deeper layers. The growth rate and wavelength of the most unstable sinusoidal perturbation are calculated and the effects of the viscosity ratios and density differences between the fluids are investigated. It is found that if the buoyant fluid is much less viscous than the overlying fluid then, in quite general circumstances, both the most unstable wavelength and the corresponding growth rate are inversely proportional to the cube root of the viscosity of the buoyant fluid. A physical explanation of this result is given by scaling analysis of the total dissipation. In the second study, the buoyant fluid takes the form of a cylinder rising through a uniform environment. The eigenmodes of small perturbation about this state of motion are found for each axial wavenumber in terms of Fourier series of separable solutions to the Stokes equations. In contrast to the first study, it is found that the most unstable wavelength and growth rate are asymptotically independent of the viscosity of the buoyant fluid when this viscosity is small.The difference between the results of the two studies is of importance, particularly for geophysical applications in which viscosity ratios are very large. Previous models of linear regions of volcanism at mid-ocean ridges and at island arcs have assumed that results obtained in simple two-layered systems can be generalized to other geometries. The conclusions of these models are discussed in the light of the stability results for a cylindrical (and hence linea.


2021 ◽  
Vol 49 (4) ◽  
pp. 136-161
Author(s):  
E. V. Ivanova ◽  
O. V. Levchenko ◽  
E. A. Ovsepyan ◽  
D. G. Borisov ◽  
T. F. Zinger

On August 6, 2021, the chief researcher of the IO RAS, Doctor of Geological and Mineralogical Sciences, Professor Ivar Oskarovich Murdmaa turned 90 years old. The main focus of I.O. Murdmaa is the study of bottom sediments of seas and oceans, their lithology, mineralogy, deposition processes, facies and formations, the theory of oceanic sedimentogenesis. He first distinguished marine volcanoterrigenous sediments and described the facies variability of modern sediments of island arcs. Ivar Murdmaa is known for his studies in mineralogy of oceanic sediments, processes of pelagic sedimentogenesis and associated iron-manganese nodules formation. Studying sediment formation in rift zones of mid-ocean ridges, he identified a new genetic type of sediments named edaphogeonus sediments, elaborated mineralogical criteria for their recognition and formation processes. In recent years I.O. Murdmaa is actively developing the theoretical concept of "sedimentosphere", paying special attention to a new direction – the study of the erosion-accumulative activity of bottom currents and the formation of contourites.


Author(s):  
D W Rees Jones ◽  
H Zhang ◽  
R F Katz

Summary It is generally accepted that melt extraction from the mantle at mid-ocean ridges is concentrated in narrow regions of elevated melt fraction called channels. Two feedback mechanisms have been proposed to explain why these channels grow by linear instability: shear flow of partially molten mantle and reactive flow of the ascending magma. These two mechanisms have been studied extensively, in isolation from each other, through theory and laboratory experiments as well as field and geophysical observations. Here, we develop a consistent theory that accounts for both proposed mechanisms and allows us to weigh their relative contributions. We show that interaction of the two feedback mechanisms is insignificant and that the total linear growth rate of channels is well-approximated by summing their independent growth rates. Furthermore, we explain how their competition is governed by the orientation of channels with respect to gravity and mantle shear. By itself, analysis of the reaction-infiltration instability predicts the formation of tube-shaped channels. We show that with the addition of even a small amount of extension in the horizontal, the combined instability favours tabular channels, consistent with the observed morphology of dunite bodies in ophiolites. We apply the new theory to mid-ocean ridges by calculating the accumulated growth and rotation of channels along streamlines of the solid flow. We show that reactive flow is the dominant instability mechanism deep beneath the ridge axis, where the most unstable orientation of high-porosity channels is sub-vertical. Channels are then rotated by the solid flow away from the vertical. The contribution of the shear-driven instability is confined to the margins of the melting region. Within the limitations of our study, the shear-driven feedback does not appear to be responsible for significant melt focusing or for the shallowly dipping seismic anisotropy that has been obtained by seismic inversions.


Author(s):  
John J. W. Rogers ◽  
M. Santosh

The concepts known as plate tectonics that began to develop in the 1960s built on a foundation of information that included: • The earth’s mantle is rigid enough to transmit seismic P and S waves, but it is mobile to long-term stresses. • The earth’s temperature gradient is so high that convective overturn must occur in the mantle. • The top of the mobile part of the mantle is a zone of relatively low velocity at depths of about 100 to 200 km. This zone separates an underlying asthenosphere from a rigid lithosphere, which includes rigid upper mantle and crust. • Seismic activity, commonly accompanied by volcanism, occurs along narrow, relatively linear, zones in oceans and along some continental margins. • The zones of instability surround large areas of comparative stability. • Ocean lithosphere is continually generated along mid-ocean ridges and destroyed where it descends under the margins of continents and island arcs. This causes oceans to become larger, but shrinkage of oceans can occur where lithosphere is destroyed around ocean margins faster than it is formed within the basin. • Some of the belts of instability are faults with lateral offsets of hundreds of kilometers. • Some continental margins are unstable (Pacific type), but others are attached to oceanic lithosphere without any apparent tectonic contact (Atlantic type). • Different areas containing continents and attached oceanic lithosphere move around the earth independently of each other. Most of this chapter consists of a summary of plate tectonics in the present earth, including processes along plate margins and the types of rocks formed there (readers who want more detailed information are referred to Rogers, 1993a; Kearey, 1996; and Condie, 1999). We also briefly discuss plumes and then finish with a word of caution about interpreting the history of the ancient and hotter earth with the principles of modern plate tectonics. Starting from the body of continually expanding information summarized above, numerous earth scientists in the 1960s and 1970s began to establish a conceptual framework that would organize scientific thinking about the earth’s tectonic processes. This required a new terminology, and it arrived rapidly (Oreskes, 2002). Geologists decided to call the stable areas “plates” and the unstable zones around them “plate margins.” Thus, the concept became known as “plate tectonics.” Plates are essentially broad regions of lithosphere, although the failure to detect low-velocity zones under many continents leaves unresolved questions.


2010 ◽  
Vol 11 (12) ◽  
pp. n/a-n/a ◽  
Author(s):  
Laura B. Hebert ◽  
Laurent G. J. Montési
Keyword(s):  

2015 ◽  
Vol 16 (3) ◽  
pp. 925-946 ◽  
Author(s):  
Andrew J. Turner ◽  
Richard F. Katz ◽  
Mark D. Behn

Nature ◽  
2009 ◽  
Vol 462 (7270) ◽  
pp. 209-212 ◽  
Author(s):  
James A. D. Connolly ◽  
Max W. Schmidt ◽  
Giulio Solferino ◽  
Nikolai Bagdassarov

Sign in / Sign up

Export Citation Format

Share Document