RNA synthesis and chromatin structure in mammalian cells *1In situ detection of template changes in living and formalin fixed L cell nuclei

1971 ◽  
Vol 69 (2) ◽  
pp. 456-460 ◽  
Author(s):  
K WONG
1999 ◽  
Vol 10 (12) ◽  
pp. 4091-4106 ◽  
Author(s):  
Zhi Hong Lu ◽  
Hongzhi Xu ◽  
Gregory H. Leno

Quiescent nuclei from differentiated somatic cells can reacquire pluripotence, the capacity to replicate, and reinitiate a program of differentiation after transplantation into amphibian eggs. The replication of quiescent nuclei is recapitulated in extracts derived from activated Xenopus eggs; therefore, we have exploited this cell-free system to explore the mechanisms that regulate initiation of replication in nuclei from terminally differentiatedXenopus erythrocytes. We find that these nuclei lack many, if not all, pre-replication complex (pre-RC) proteins. Pre-RC proteins from the extract form a stable association with the chromatin of permeable nuclei, which replicate in this system, but not with the chromatin of intact nuclei, which do not replicate, even though these proteins cross an intact nuclear envelope. During extract incubation, the linker histones H1 and H10 are removed from erythrocyte chromatin by nucleoplasmin. We show that H1 removal facilitates the replication of permeable nuclei by increasing the frequency of initiation most likely by promoting the assembly of pre-RCs on chromatin. These data indicate that initiation in erythrocyte nuclei requires the acquisition of pre-RC proteins from egg extract and that pre-RC assembly requires the loss of nuclear envelope integrity and is facilitated by the removal of linker histone H1 from chromatin.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4537-4545 ◽  
Author(s):  
S. Kozubek ◽  
E. Lukášová ◽  
L. Rýznar ◽  
M. Kozubek ◽  
A. Lišková ◽  
...  

Abstract Using dual-color fluorescence in situ hybridization (FISH) combined with two-dimensional (2D) image analysis, the locations of ABL and BCR genes in cell nuclei were studied. The center of nucleus-to-gene and mutual distances of ABL and BCR genes in interphase nuclei of nonstimulated and stimulated lymphocytes as well as in lymphocytes stimulated after irradiation were determined. We found that, after stimulation, the ABL and BCR genes move towards the membrane, their mutual distances increase, and the shortest distance between heterologous ABL and BCR genes increases. The distribution of the shortest distances between ABL and BCR genes in the G0 phase of lymphocytes corresponds to the theoretical distribution calculated by the Monte-Carlo simulation. Interestingly, the shortest ABL-BCR distances in G1 and S(G2 ) nuclei are greater in experiment as compared with theory. This result suggests the existence of a certain regularity in the gene arrangement in the G1 and S(G2 ) nuclei that keeps ABL and BCR genes at longer than random distances. On the other hand, in about 2% to 8% of lymphocytes, the ABL and BCR genes are very close to each other (the distance is less than ∼0.2 to 0.3 μm). For comparison, we studied another pair of genes, c-MYC and IgH, that are critical for the induction of t(8; 14) translocation that occurs in the Burkitt's lymphoma. We found that in about 8% of lymphocytes, c-MYC and IgH are very close to each other. Similar results were obtained for human fibroblasts. γ-Radiation leads to substantial changes in the chromatin structure of stimulated lymphocytes: ABL and BCR genes are shifted to the nuclear center, and mutual ABL-BCR distances become much shorter in the G1 and S(G2 ) nuclei. Therefore, we hypothesize that the changes of chromatin structure in the irradiated lymphocytes might increase the probability of a translocation during G1 and S(G2 ) stages of the cell cycle. The fact that the genes involved in the t(8; 14) translocation are also located close together in a certain fraction of cells substantiates the hypothesis that physical distance plays an important role in the processes leading to the translocations that are responsible for oncogenic transformation of cells.


1998 ◽  
Vol 17 (2) ◽  
pp. 111-123 ◽  
Author(s):  
Petter Ranefall ◽  
Kenneth Wester ◽  
Ann-Catrin Andersson ◽  
Christer Busch ◽  
Ewert Bengtsson

A fully automatic method for quantification of images of immunohistochemically stained cell nuclei by computing area proportions, is presented. Agarose embedded cultured fibroblasts were fixed, paraffin embedded and sectioned at 4 µm. They were then stained together with 4 µm sections of the test specimen obtained from bladder cancer material.A colour based classifier is automatically computed from the control cells. The method was tested on formalin fixed paraffin embedded tissue section material, stained with monoclonal antibodies against the Ki67 antigen and cyclin A protein. Ki67 staining results in a detailed nuclear texture with pronounced nucleoli and cyclin A staining is obtained in a more homogeneously distributed pattern.However, different staining patterns did not seem to influence labelling index quantification, and the sensitivity to variations in light conditions and choice of areas within the control population was low. Thus, the technique represents a robust and reproducible quantification method.In tests measuring proportions of stained area an average standard deviation of about 1.5% for the same field was achieved when classified with classifiers created from different control samples.


1996 ◽  
Vol 74 (5) ◽  
pp. 623-632 ◽  
Author(s):  
Margarida O. Krause

This review represents a synthesis of the work of the author and her collaborators through 40 years of research aimed at an understanding of chromatin composition and functional arrangement. It describes the progressive experimental stages, starting with autoradiography and protein analysis and continuing on to a more functional approach testing the template properties of intact nuclei, as well as nuclei depleted of, or reconstituted with, defined fractions extracted from the chromatin of other cell lines or tissues. As new questions were raised at each phase of these studies, the investigation was shifted from chromosomal proteins to the role of a small RNA that coextracted with one protein fraction and whose properties suggested a transcription-activating function. The active RNA was identified as a class in RNA, designated as 7 SK. Its properties suggested a role in the activation of two oncogenes, the SV 40 T-antigen and the mammalian c-myc gene. A detailed analysis of the c-myc gene expression during transformation induction in temperature-sensitive mammalian cells finally culminated in in vivo evidence for a role of 7 SK in c-myc deregulation, using cells transfected with antisense oligonucleotides to block 7 SK activity. This was followed by an investigation of promoter targeting by 7 SK RNP using electrophoretic mobility shift assays with whole or 7 SK-depleted cell extracts. Taken together, these studies indicate that 7 SK RNP participates in transformation-dependent deregulation of the c-myc gene by activation of two c-myc minor promoters. The implications of these findings are discussed.Key words: chromatin structure, histones, nonhistones, 7 SK RNA, the c-myc gene, transcription regulation, SV 40, transformation.


Sign in / Sign up

Export Citation Format

Share Document