Role of a specific endogenous fatty acid fraction in the coupling-uncoupling mechanism of oxidative phosphorylation of brown adipose tissue

1972 ◽  
Vol 72 (1) ◽  
pp. 169-187 ◽  
Author(s):  
A. Bulychev ◽  
R. Kramar ◽  
Z. Drahota ◽  
Olov Lindberg
Cell Reports ◽  
2021 ◽  
Vol 34 (2) ◽  
pp. 108624
Author(s):  
Christian Schlein ◽  
Alexander W. Fischer ◽  
Frederike Sass ◽  
Anna Worthmann ◽  
Klaus Tödter ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 142-OR
Author(s):  
MASAJI SAKAGUCHI ◽  
SHOTA OKAGAWA ◽  
SAYAKA KITANO ◽  
TATSUYA KONDO ◽  
EIICHI ARAKI

Author(s):  
Aleix Gavaldà-Navarro ◽  
Joan Villarroya ◽  
Rubén Cereijo ◽  
Marta Giralt ◽  
Francesc Villarroya

iScience ◽  
2021 ◽  
pp. 102434
Author(s):  
Winifred W. Yau ◽  
Kiraely Adam Wong ◽  
Jin Zhou ◽  
Nivetha Kanakaram Thimmukonda ◽  
Yajun Wu ◽  
...  

1970 ◽  
Vol 118 (1) ◽  
pp. 171-179 ◽  
Author(s):  
W. N. Aldridge ◽  
B. W. Street

1. The binding of trimethyltin and triethyltin to rat liver mitochondria was determined and the results were analysed by the method of Scatchard (1949). 2. One binding site (site 1) has the correct characteristics for the site to which trimethyltin and triethyltin are attached when they inhibit oxidative phosphorylation. For each compound the concentration of site 1 is 0.8nmol/mg of protein and the ratios of their affinity constants are the same as the ratio of the concentrations inhibiting oxidative phosphorylation. 3. Binding site 1 is present in a fraction derived from mitochondria containing only 15% of the original protein. In this preparation ultrasonication rapidly destroyed site 1. 4. Dimethyltin and diethyltin do not prevent binding of triethyltin to rat liver mitochondria, whereas triethyl-lead does. 5. Trimethyltin and triethyltin bind to mitochondria from brown adipose tissue and the results indicate a binding site 1 similar to that in rat liver mitochondria. 6. The advantages and limitations of this approach to the study of inhibitors are discussed.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1122
Author(s):  
Jamie I. van der van der Vaart ◽  
Mariëtte R. Boon ◽  
Riekelt H. Houtkooper

Obesity is becoming a pandemic, and its prevalence is still increasing. Considering that obesity increases the risk of developing cardiometabolic diseases, research efforts are focusing on new ways to combat obesity. Brown adipose tissue (BAT) has emerged as a possible target to achieve this for its functional role in energy expenditure by means of increasing thermogenesis. An important metabolic sensor and regulator of whole-body energy balance is AMP-activated protein kinase (AMPK), and its role in energy metabolism is evident. This review highlights the mechanisms of BAT activation and investigates how AMPK can be used as a target for BAT activation. We review compounds and other factors that are able to activate AMPK and further discuss the therapeutic use of AMPK in BAT activation. Extensive research shows that AMPK can be activated by a number of different kinases, such as LKB1, CaMKK, but also small molecules, hormones, and metabolic stresses. AMPK is able to activate BAT by inducing adipogenesis, maintaining mitochondrial homeostasis and inducing browning in white adipose tissue. We conclude that, despite encouraging results, many uncertainties should be clarified before AMPK can be posed as a target for anti-obesity treatment via BAT activation.


2015 ◽  
Vol 241 (1) ◽  
pp. e46 ◽  
Author(s):  
J. Trnovska ◽  
V. Skop ◽  
H. Malinska ◽  
L. Kazdova

Sign in / Sign up

Export Citation Format

Share Document