scholarly journals The inhibitory effect of coproporphyrins on amino acid uptake into proteins by porphyric liver cells

FEBS Letters ◽  
1972 ◽  
Vol 23 (1) ◽  
pp. 37-40 ◽  
Author(s):  
Genevieve S. Incefy ◽  
Attallah Kappas
1987 ◽  
Vol 114 (4) ◽  
pp. 470-474 ◽  
Author(s):  
G. S. G. Spencer ◽  
D. J. Hill ◽  
G. J. Garssen ◽  
J. P. G. Williams

Abstract. The effects of somatostatin on the acute metabolic actions of insulin on newborn rat myoblasts in culture has been examined during monolayer culture. Somatostatin significantly inhibited the insulin-stimulated uptake of [3H]leucine and [3H]amino-isobutyric acid into myoblasts but had no effect on basal (unstimulated) uptake of these two substances. The lowest concentration of somatostatin to have a significant effect was 10 μg/l, and this was apparent in all the experiments undertaken. The inhibitory effect of somatostatin was seen at all effective concentrations of insulin used (0.3–1 U/l). These findings lend support to the concept of an endocrine role for somatostatin in vivo and suggest that a peripheral antagonism may exist between circulating insulin and somatostatin on anabolic processes such as nutrient uptake into cells.


1997 ◽  
Vol 272 (1) ◽  
pp. C156-C162 ◽  
Author(s):  
E. Tsiani ◽  
N. Abdullah ◽  
I. G. Fantus

The protein tyrosine phosphatase (PTP) inhibitors vanadate and pervanadate (pV) exert insulin-like biologic effects. In cultured differentiated rat L6 skeletal muscle cells, vanadate and pV stimulated 2-deoxy-D-[3H]glucose uptake in a dose- and time-dependent manner. There was no increase in maximum stimulation by additional insulin. In contrast, whereas insulin stimulated [14C]methylaminoisobutyric acid (MeAIB) uptake, basal uptake was inhibited by vanadate and pV. Insulin-stimulated MeAIB uptake was also inhibited in a dose-dependent manner and completely abolished by 5 mM vanadate or 0.1 mM pV. The inhibitory effect on basal MeAIB uptake was associated with a decrease in transporter affinity and a small decrease in maximum transport capacity, whereas the insulin-stimulated increase in maximum transport capacity was completely inhibited. Inhibition of MeAIB uptake by vanadate and pV was not blocked by cycloheximide, and oubain did not inhibit uptake. Vanadate also inhibited amino acid deprivation-stimulated MeAIB uptake. Insulin-stimulated MeAIB uptake was also inhibited in rat hepatoma cells. Thus vanadate and pV mimic insulin to stimulate glucose uptake but inhibit system A amino acid uptake. The relative inhibitory concentrations of vanadate and pV suggest that the mechanism may involve PTP inhibition.


Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1049
Author(s):  
Csaba Juhász ◽  
Sandeep Mittal

Epilepsy is a common clinical manifestation and a source of significant morbidity in patients with brain tumors. Neuroimaging has a pivotal role in neuro-oncology practice, including tumor detection, differentiation, grading, treatment guidance, and posttreatment monitoring. In this review, we highlight studies demonstrating that imaging can also provide information about brain tumor-associated epileptogenicity and assist delineation of the peritumoral epileptic cortex to optimize postsurgical seizure outcome. Most studies focused on gliomas and glioneuronal tumors where positron emission tomography (PET) and advanced magnetic resonance imaging (MRI) techniques can detect metabolic and biochemical changes associated with altered amino acid transport and metabolism, neuroinflammation, and neurotransmitter abnormalities in and around epileptogenic tumors. PET imaging of amino acid uptake and metabolism as well as activated microglia can detect interictal or peri-ictal cortical increased uptake (as compared to non-epileptic cortex) associated with tumor-associated epilepsy. Metabolic tumor volumes may predict seizure outcome based on objective treatment response during glioma chemotherapy. Advanced MRI, especially glutamate imaging, can detect neurotransmitter changes around epileptogenic brain tumors. Recently, developed PET radiotracers targeting specific glutamate receptor types may also identify therapeutic targets for pharmacologic seizure control. Further studies with advanced multimodal imaging approaches may facilitate development of precision treatment strategies to control brain tumor-associated epilepsy.


2007 ◽  
Vol 282 (18) ◽  
pp. e13-e15
Author(s):  
Nicole Kresge ◽  
Robert D. Simoni ◽  
Robert L. Hill

Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 125
Author(s):  
Uğur Kahya ◽  
Ayşe Sedef Köseer ◽  
Anna Dubrovska

Tumorigenesis is driven by metabolic reprogramming. Oncogenic mutations and epigenetic alterations that cause metabolic rewiring may also upregulate the reactive oxygen species (ROS). Precise regulation of the intracellular ROS levels is critical for tumor cell growth and survival. High ROS production leads to the damage of vital macromolecules, such as DNA, proteins, and lipids, causing genomic instability and further tumor evolution. One of the hallmarks of cancer metabolism is deregulated amino acid uptake. In fast-growing tumors, amino acids are not only the source of energy and building intermediates but also critical regulators of redox homeostasis. Amino acid uptake regulates the intracellular glutathione (GSH) levels, endoplasmic reticulum stress, unfolded protein response signaling, mTOR-mediated antioxidant defense, and epigenetic adaptations of tumor cells to oxidative stress. This review summarizes the role of amino acid transporters as the defender of tumor antioxidant system and genome integrity and discusses them as promising therapeutic targets and tumor imaging tools.


1962 ◽  
Vol 237 (3) ◽  
pp. 803-806
Author(s):  
Gordon Guroff ◽  
Sidney Udenfriend

1968 ◽  
Vol 243 (8) ◽  
pp. 1846-1853 ◽  
Author(s):  
L J Elsas ◽  
I Albrecht ◽  
L E Rosenberg

Sign in / Sign up

Export Citation Format

Share Document