Accessibility of histone H4 gene of Physarum polycephalum to DNase I during the cell cycle

FEBS Letters ◽  
1982 ◽  
Vol 150 (2) ◽  
pp. 439-444 ◽  
Author(s):  
Marcelle L. Wilhelm ◽  
F. Xavier Wilhelm ◽  
Barbara Toublan ◽  
Raymond Jalouzot
2003 ◽  
Vol 23 (4) ◽  
pp. 1460-1469 ◽  
Author(s):  
Hayk Hovhannisyan ◽  
Brian Cho ◽  
Partha Mitra ◽  
Martin Montecino ◽  
Gary S. Stein ◽  
...  

ABSTRACT During the shutdown of proliferation and onset of differentiation of HL-60 promyelocytic leukemia cells, expression of the cell cycle-dependent histone genes is downregulated at the level of transcription. To address the mechanism by which this regulation occurs, we examined the chromatin structure of the histone H4/n (FO108, H4FN) gene locus. Micrococcal nuclease, DNase I, and restriction enzymes show similar cleavage sites and levels of sensitivity at the H4/n locus in both proliferating and differentiated HL-60 cells. In contrast, differentiation-related activation of the cyclin-dependent kinase inhibitor p21cip1/WAF1 gene is accompanied by increased nuclease hypersensitivity. Chromatin immunoprecipitation assays of the H4/n gene reveal that acetylated histones H3 and H4 are maintained at the same levels in proliferating and postproliferative cells. Thus, the chromatin of the H4/n locus remains in an open state even after transcription ceases. Using ligation-mediated PCR to visualize genomic DNase I footprints at single-nucleotide resolution, we find that protein occupancy at the site II cell cycle element is selectively diminished in differentiated cells while the site I element remains occupied. Decreased occupancy of site II is reflected by loss of the site II binding protein HiNF-P. We conclude that H4 gene transcription during differentiation is downregulated by modulating protein interaction at the site II cell cycle element and that retention of an open chromatin conformation may be associated with site I occupancy.


1987 ◽  
Vol 7 (3) ◽  
pp. 1048-1054
Author(s):  
A Seiler-Tuyns ◽  
B M Paterson

The mouse histone H4 gene, when stably transformed into L cells on the PSV2gpt shuttle vector, is cell cycle regulated in parallel with the endogenous H4 genes. This was determined in exponentially growing pools of transformants fractionated into cell cycle-specific stages by centrifugal elutriation, a method for purifying cells at each stage of the cell cycle without the use of treatments that arrest growth. Linker additions in the 5' noncoding region of the H4 RNA or in the coding region of the gene did not affect the cell cycle-regulated expression of the modified H4 gene even though the overall level of expression was altered. However, replacing the H4 promoter with the human alpha-2 globin promoter, so that the histone transcript produced by the chimeric gene remains essentially unchanged, resulted in the constitutive expression of H4 mRNA during all phases of the cell cycle with no net increase in H4 mRNA levels during the G1-to-S transition. From these results we conclude that all the information necessary for the cell cycle-regulated expression of the H4 gene is contained in the 5.2-kilobase subclone used in these studies with 228 nucleotides of 5'-flanking DNA and that the increase in H4 mRNA during the G1-to-S transition in the cell cycle is mediated by the H4 promoter and not by the increased stability of the H4 RNA.


Biochemistry ◽  
1997 ◽  
Vol 36 (47) ◽  
pp. 14447-14455 ◽  
Author(s):  
Bo Guo ◽  
Janet L. Stein ◽  
André J. van Wijnen ◽  
Gary S. Stein

2003 ◽  
Vol 23 (22) ◽  
pp. 8110-8123 ◽  
Author(s):  
Partha Mitra ◽  
Rong-Lin Xie ◽  
Ricardo Medina ◽  
Hayk Hovhannisyan ◽  
S. Kaleem Zaidi ◽  
...  

ABSTRACT At the G1/S phase cell cycle transition, multiple histone genes are expressed to ensure that newly synthesized DNA is immediately packaged as chromatin. Here we have purified and functionally characterized the critical transcription factor HiNF-P, which is required for E2F-independent activation of the histone H4 multigene family. Using chromatin immunoprecipitation analysis and ligation-mediated PCR-assisted genomic sequencing, we show that HiNF-P interacts with conserved H4 cell cycle regulatory sequences in vivo. Antisense inhibition of HiNF-P reduces endogenous histone H4 gene expression. Furthermore, we find that HiNF-P utilizes NPAT/p220, a substrate of the cyclin E/cyclin-dependent kinase 2 (CDK2) kinase complex, as a key coactivator to enhance histone H4 gene transcription. The biological role of HiNF-P is reflected by impeded cell cycle progression into S phase upon antisense-mediated reduction of HiNF-P levels. Our results establish that HiNF-P is the ultimate link in a linear signaling pathway that is initiated with the growth factor-dependent induction of cyclin E/CDK2 kinase activity at the restriction point and culminates in the activation of histone H4 genes through HiNF-P at the G1/S phase transition.


1984 ◽  
Vol 3 (11) ◽  
pp. 2659-2662 ◽  
Author(s):  
M.L. Wilhelm ◽  
B. Toublan ◽  
R. Jalouzot ◽  
F.X. Wilhelm

2005 ◽  
Vol 25 (14) ◽  
pp. 6140-6153 ◽  
Author(s):  
Angela Miele ◽  
Corey D. Braastad ◽  
William F. Holmes ◽  
Partha Mitra ◽  
Ricardo Medina ◽  
...  

ABSTRACT Genome replication in eukaryotic cells necessitates the stringent coupling of histone biosynthesis with the onset of DNA replication at the G1/S phase transition. A fundamental question is the mechanism that links the restriction (R) point late in G1 with histone gene expression at the onset of S phase. Here we demonstrate that HiNF-P, a transcriptional regulator of replication-dependent histone H4 genes, interacts directly with p220NPAT, a substrate of cyclin E/CDK2, to coactivate histone genes during S phase. HiNF-P and p220 are targeted to, and colocalize at, subnuclear foci (Cajal bodies) in a cell cycle-dependent manner. Genetic or biochemical disruption of the HiNF-P/p220 interaction compromises histone H4 gene activation at the G1/S phase transition and impedes cell cycle progression. Our results show that HiNF-P and p220 form a critical regulatory module that directly links histone H4 gene expression at the G1/S phase transition to the cyclin E/CDK2 signaling pathway at the R point.


2001 ◽  
Vol 276 (21) ◽  
pp. 18624-18632 ◽  
Author(s):  
Ronglin Xie ◽  
André J. van Wijnen ◽  
Caroline van der Meijden ◽  
Mai X. Luong ◽  
Janet L. Stein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document