scholarly journals Modulation of interleukin 2 high affinity binding to human T cells by a pyrimidodiazepine insect metabolite

FEBS Letters ◽  
1993 ◽  
Vol 334 (3) ◽  
pp. 309-312 ◽  
Author(s):  
Peter H. Boyle ◽  
Monika Borchert ◽  
Anthony P. Davis ◽  
Frances M. Heaney ◽  
Irmgard Ziegler
1989 ◽  
Vol 119 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Annick Harel-Bellan ◽  
Zohair Mishal ◽  
Jami Willette-Brown ◽  
William L. Farrar

1984 ◽  
Vol 159 (3) ◽  
pp. 758-772 ◽  
Author(s):  
C E Müller ◽  
K Rajewsky

Previous work has shown that the injection of antiidiotope antibodies specific for idiotopes of the germline-encoded anti-(4-hydroxy-3-nitro-phenyl) acetyl (NP) antibody B1-8 enhanced or suppressed the expression of B1-8 idiotopes in subsequent humoral anti-NP responses, depending on the dose and perhaps also the isotype of the injected antibody. To formally answer the question of whether the isotype of an antiidiotope determines its effector function in this type of idiotypic control, we have performed regulatory experiments with isotype switch variants selected from two hybridomas secreting anti-B1-8 idiotopes of CBA (Ighj) and C57BL/6 (Ighb) origin. The antibodies of each variant family differ from each other only in the constant region of the heavy chain. The results show that, irrespective of whether an antiidiotope antibody belongs to the IgG1, IgG2b, IgG2a, or IgE class, a 10-ng dose enhances idiotope expression whereas a dose of 10 micrograms exerts a suppressive effect. It emerges from the present and parallel data that the expression of antibody V regions resembling idiotypically that of antibody B1-8 can be enhanced and suppressed by any of four antiidiotope antibodies that recognize distinct idiotopes on those V regions. This suggests that the initial step in the regulatory process induced by an antiidiotope is its binding to antibody V regions carrying the target idiotope. The antiidiotopes preferentially regulate the expression of antibodies that coexpress with the target idiotope other B1-8 idiotopes, despite the fact that some B1-8 idiotopes are also expressed independently of each other in anti-NP responses of idiotypically unmanipulated mice. This finding may reflect high affinity binding of the antiidiotopes to the target against which they were originally raised (i.e., antibody B1-8) or, more likely, a preferential recognition of B1-8-like V regions by regulatory T cells.


1990 ◽  
Vol 63 (02) ◽  
pp. 193-203 ◽  
Author(s):  
John R Shainoff ◽  
Deborah J Stearns ◽  
Patricia M DiBello ◽  
Youko Hishikawa-Itoh

SummaryThe studies reported here probe the existence of a receptor-mediated mode of fibrin-binding by macrophages that is associated with the chemical change underlying the fibrinogen-fibrin conversion (the release of fibrinopeptides from the amino-terminal domain) without depending on fibrin-aggregation. The question is pursued by 1) characterization of binding in relation to fibrinopeptide content of both the intact protein and the CNBr-fragment comprising the amino-terminal domain known as the NDSK of the protein, 2) tests of competition for binding sites, and 3) photo-affinity labeling of macrophage surface proteins. The binding of intact monomers of types lacking either fibrinopeptide A alone (α-fibrin) or both fibrinopeptides A and B (αβ-fibrin) by peritoneal macrophages is characterized as proceeding through both a fibrin-specific low density/high affinity (BMAX ≃ 200–800 molecules/cell, KD ≃ 10−12 M) interaction that is not duplicated with fibrinogen, and a non-specific high density/low affinity (BMAX ≥ 105 molecules/cell, KD ≥ 10−6 M) interaction equivalent to the weak binding of fibrinogen. Similar binding characteristics are displayed by monocyte/macrophage cell lines (J774A.1 and U937) as well as peritoneal macrophages towards the NDSK preparations of these proteins, except for a slightly weaker (KD ≃ 10−10 M) high-affinity binding. The high affinity binding of intact monomer is inhibitable by fibrin-NDSK, but not fibrinogen-NDSK. This binding appears principally dependent on release of fibrinopeptide-A, because a species of fibrin (β-fibrin) lacking fibrinopeptide-B alone undergoes only weak binding similar to that of fibrinogen. Synthetic Gly-Pro-Arg and Gly-His-Arg-Pro corresponding to the N-termini of to the α- and the β-chains of fibrin both inhibit the high affinity binding of the fibrin-NDSKs, and the cell-adhesion peptide Arg-Gly-Asp does not. Photoaffinity-labeling experiments indicate that polypeptides with elec-trophoretically estimated masses of 124 and 187 kDa are the principal membrane components associated with specifically bound fibrin-NDSK. The binding could not be up-regulated with either phorbol myristyl acetate, interferon gamma or ADP, but was abolished by EDTA and by lipopolysaccharide. Because of the low BMAX, it is suggested that the high-affinity mode of binding characterized here would be too limited to function by itself in scavenging much fibrin, but may act cooperatively with other, less limited modes of fibrin binding.


1994 ◽  
Vol 72 (03) ◽  
pp. 465-474 ◽  
Author(s):  
Neelesh Bangalore ◽  
William N Drohan ◽  
Carolyn L Orthner

SummaryActivated protein C (APC) is an antithrombotic serine proteinase having anticoagulant, profibrinolytic and anti-inflammatory activities. Despite its potential clinical utility, relatively little is known about its clearance mechanisms. In the present study we have characterized the interaction of APC and its active site blocked forms with human umbilical vein endothelial cells (HUVEC). At 4° C 125I-APC bound to HUVEC in a specific, time dependent, saturable and reversible manner. Scatchard analysis of the binding isotherm demonstrated a Kd value of 6.8 nM and total number of binding sites per cell of 359,000. Similar binding isotherms were obtained using radiolabeled protein C (PC) zymogen as well as D-phe-pro-arg-chloromethylketone (PPACK) inhibited APC indicating that a functional active site was not required. Competition studies showed that the binding of APC, PPACK-APC and PC were mutually exclusive suggesting that they bound to the same site(s). Proteolytic removal of the N-terminal γ-carboxyglutamic acid (gla) domain of PC abolished its ability to compete indicating that the gla-domain was essential for cell binding. Surprisingly, APC binding to these cells appeared to be independent of protein S, a cofactor of APC generally thought to be required for its high affinity binding to cell surfaces. The identity of the cell binding site(s), for the most part, appeared to be distinct from other known APC ligands which are associated with cell membranes or extracellular matrix including phospholipid, thrombomodulin, factor V, plasminogen activator inhibitor type 1 (PAI-1) and heparin. Pretreatment of HUVEC with antifactor VIII antibody caused partial inhibition of 125I-APC binding indicating that factor VIII or a homolog accounted for ∼30% of APC binding. Studies of the properties of surface bound 125I-APC or 125I-PC and their fate at 4°C compared to 37 °C were consistent with association of ∼25% of the initially bound radioligand with an endocytic receptor. However, most of the radioligand appeared not to be bound to an endocytic receptor and dissociated rapidly at 37° C in an intact and functional state. These data indicate the presence of specific, high affinity binding sites for APC and PC on the surface of HUVEC. While a minor proportion of binding sites may be involved in endocytosis, the identity and function of the major proportion is presently unknown. It is speculated that this putative receptor may be a further mechanisms of localizing the PC antithrombotic system to the vascular endothelium.


Sign in / Sign up

Export Citation Format

Share Document