Dynamic analysis of a two-link flexible manipulator system using Extended Bond Graphs

1993 ◽  
Vol 330 (6) ◽  
pp. 1113-1134 ◽  
Author(s):  
Chiaming Yen ◽  
Glenn Y. Masada ◽  
Wei-Min Chan
1997 ◽  
Vol 119 (4) ◽  
pp. 831-833 ◽  
Author(s):  
Fan Zijie ◽  
Lu Bingheng ◽  
C. H. Ku

The main objective of this work is to predict the effect of distributed viscoelastic damping on the dynamic response of multilink flexible robot manipulators. A general approach, based on the principle of virtual work, is presented for the modeling of flexible robot arms with distributed viscoelastic damping. The finite element equations are developed, and a recurrence formulation for numerical integration of these equations is obtained. It is demonstrated, by a numerical example, that the viscoelastic damping treatments have a significant effect on the dynamic response of flexible robot manipulators.


1994 ◽  
Vol 116 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Chiaming Yen ◽  
Glenn Y. Masada

An Extended Bond Graph (EBG) formulation is described for analyzing the dynamics of a flexible multibody system. This work extends the EBG method, which was originally developed for systems with small spatial motion, to rigid and flexible multibody systems exhibiting large overall motions. The development uses modular models for the elements so that complex system models can be derived by coupling these modules. The EBG formulation for moving reference frames is used to derive models of one-link and two-link flexible manipulator systems. This approach has several advantages over the Lagrangian and Newtonian methods, such as its ability to solve the forward and inverse dynamic problems using the same bond graph. Finally, the EBG formulations for cantilever beams and for multi-rigid body dynamic systems are shown to be special cases of the general EGBs for flexible bodies.


2015 ◽  
Vol 100 ◽  
pp. 226-233 ◽  
Author(s):  
Vjekoslav Damic ◽  
Maida Cohodar

Author(s):  
Daniel Grande ◽  
Felice Mancini ◽  
Pradeep Radhakrishnan

This paper presents a graph grammar based automated tool that can generate bond graphs of various systems for dynamic analysis. A generic graph grammar based representation scheme has been developed for different system components and bond graph elements. Using that representation, grammar rules have been developed that enable interpreting a given system and generating bond graph through an algorithmic search process. Besides, the paper also demonstrates the utility of the proposed tool in classrooms to enhance value in bond graph based system dynamics education. The underlying technique, various examples and benefits of this automated tool will be highlighted.


Sign in / Sign up

Export Citation Format

Share Document