Steam-assisted gravity drainage in oil sand reservoirs using a combination of vertical and horizontal wells

Fuel ◽  
1995 ◽  
Vol 74 (8) ◽  
pp. 1180-1184 ◽  
Author(s):  
P.E. Rose ◽  
M.D. Deo
Author(s):  
Thomas de Haas ◽  
Hossein Fadeai ◽  
David Sinton

In-situ recovery of heavy-oil and bitumen is used when reserves are too deep underground for conventional surface mining technologies. Steam assisted gravity drainage (SAGD) is process in which two horizontal wells, one vertically 5m above the other, are drilled into an oil-rich region. Steam is injected into the reservoir from the top well, and an oil steam-condensate mixture is pumped out the production well. The aim of this research is to physically model a section of oil sand in a SAGD operation. An array of micropillars fabricated into a glass microfluidic chip is used to represent the grains of sand. The chip was positioned vertically so that gravity plays a dominate role in drainage. Steam was pumped into the chip, reducing the viscosity of the oil and allowing oil and steam to flow under gravity to the outlet. The position of the steam front and the micro-scale interactions of the steam and oil were recorded over time.


SPE Journal ◽  
2016 ◽  
Vol 21 (02) ◽  
pp. 311-333 ◽  
Author(s):  
Sahar Ghannadi ◽  
Mazda Irani ◽  
Rick Chalaturnyk

Summary Steam-assisted gravity drainage is the method of choice to extract bitumen from Athabasca oil-sand reservoirs in Western Canada. Under reservoir conditions, bitumen is immobile because of high viscosity, and its typically high level of saturation limits the injectivity of steam. In current industry practice, steam is circulated within injection and production wells. Operators keep the steam circulating until mobile bitumen breaks through the producer and communication is established between the injector and the producer. The “startup” phase is a time-consuming process taking three or more months with no oil production. A variety of processes could be used to minimize the length of the startup phase, such as electromagnetic (EM) heating in either the induction (medium frequency) or radio-frequency ranges. Knowledge of the size of the hot zone formed by steam circulation and of the benefits of simultaneous EM-heating techniques increases understanding of the startup process and helps to minimize startup duration. The aim of the present work is to introduce an analytical model to predict startup duration for steam circulation with and without EM heating. Results reveal that resistive (electrothermal) heating with/without brine injection cannot be a preferable method for mobilizing the bitumen in startup phase. Induction slightly decreases startup time at frequencies smaller than 10 kHz, and at 100 kHz it can reduce startup time to less than two months.


SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1721-1742 ◽  
Author(s):  
Mazda Irani ◽  
Ian Gates

Summary Li et al. (2004) described three zones at the edge of steam chambers on the basis of drainage conditions: drained, partially drained, and undrained. In the drained zone, the pore pressure is controlled by injection pressure, and fluid mobility within this region is sufficient to drain additional pore pressures because of shear dilation and pore-fluid thermal expansion. The undrained zone lies beyond the partially drained zone and extends to virgin reservoir far beyond the chamber. In this zone shearing behaves under undrained conditions; by this, Li et al. (2004) mean no volume change occurs but shear lead to changes in pore pressure. Li et al. (2004) proposed that the boundaries of these zones are dependent on bitumen viscosity, which relates to the temperature distribution beyond the steam interface. Because drained/undrained conditions affect the geomechanics at the edge of the chamber, we investigate whether the assumption of Li et al. (2004) that there is no volume change within the sheared zone is correct and is supported by field data. Here, we establish the physics associated with the undrained zone at the edge of steam-assisted gravity-drainage steam chamber and explore the pressure front vs. temperature front of different oil-sand field projects. The results reveal that the drained zone governed by pressure-front advancement is greater in extent than the sheared zone. The thermodynamics of the undrained zone are discussed to derive a new theory for mechanothermal phenomena at the edge of the chamber. The results from the theory show that the drained zone extends beyond the temperature front and thus, from a geomechanical point of view, the system solely consists of the drained and partially drained zones.


SPE Journal ◽  
2011 ◽  
Vol 16 (03) ◽  
pp. 503-512 ◽  
Author(s):  
Jyotsna Sharma ◽  
Ian D. Gates

Summary Steam-assisted gravity drainage (SAGD) has become the preferred process to recover bitumen from Athabasca deposits in Alberta. The method consists of a lower horizontal production well, typically located approximately 2 m above the base of the oil zone, and an upper horizontal injection well located roughly 5 to 10 m above the production well. Steam flows from the injection well into a steam chamber that surrounds the wells and releases its latent heat to the cool oil sands at the edge of the chamber. This research re-examines heat transfer at the edge of the steam chamber. Specifically, a new theory is derived to account for convection of warm condensate into the oil sand at the edge of the chamber. The results show that, if the injection pressure is higher than the initial reservoir pressure, convective heat transfer can be larger than conductive heat transfer into the oil sand at the edge of the chamber. However, enhancement of the heat-transfer rate by convection may not necessarily imply higher oil rates; this can be explained by relative permeability effects at the chamber edge. As the condensate invades the oil sand, the oil saturation drops and, consequently, the oil relative permeability falls. This, in turn, results in the reduction of the oil mobility, despite the lowered oil viscosity because of higher temperature arising from convective heat transfer.


Sign in / Sign up

Export Citation Format

Share Document