Three dimensional structures of the thermal shock waves around a rapidly moving heat source

1990 ◽  
Vol 28 (10) ◽  
pp. 1003-1017 ◽  
Author(s):  
Da Yu Tzou
Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2052 ◽  
Author(s):  
Elham Mirkoohi ◽  
Daniel E. Seivers ◽  
Hamid Garmestani ◽  
Steven Y. Liang

Selective laser melting (SLM) is an emerging additive manufacturing (AM) technology for metals. Intricate three-dimensional parts can be generated from the powder bed by selectively melting the desired location of the powders. The process is repeated for each layer until the part is built. The necessary heat is provided by a laser. Temperature magnitude and history during SLM directly determine the molten pool dimensions, thermal stress, residual stress, balling effect, and dimensional accuracy. Laser-matter interaction is a crucial physical phenomenon in the SLM process. In this paper, five different heat source models are introduced to predict the three-dimensional temperature field analytically. These models are known as steady state moving point heat source, transient moving point heat source, semi-elliptical moving heat source, double elliptical moving heat source, and uniform moving heat source. The analytical temperature model for all of the heat source models is solved using three-dimensional differential equations of heat conduction with different approaches. The steady state and transient moving heat source are solved using a separation of variables approach. However, the rest of the models are solved by employing Green’s functions. Due to the high temperature in the presence of the laser, the temperature gradient is usually high which has a substantial impact on thermal material properties. Consequently, the temperature field is predicted by considering the temperature sensitivity thermal material properties. Moreover, due to the repeated heating and cooling, the part usually undergoes several melting and solidification cycles, and this physical phenomenon is considered by modifying the heat capacity using latent heat of melting. Furthermore, the multi-layer aspect of the metal AM process is considered by incorporating the temperature history from the previous layer since the interaction of the layers have an impact on heat transfer mechanisms. The proposed temperature field models based on different heat source approaches are validated using experimental measurement of melt pool geometry from independent experimentations. A detailed explanation of the comparison of models is also provided. Moreover, the effect of process parameters on the balling effect is also discussed.


Volume 3 ◽  
2004 ◽  
Author(s):  
Gustavo Gutierrez ◽  
Juan Guillermo Araya

Laser assisted machining is a recent technique for machining brittle ceramic materials by first softening them by heating the material with a laser beam, without reaching the melting point and, in this way, minimizing the damage of the workpiece and tool. The use of a laser source is a common procedure in numerous electronic and optical material processes. This research presents a new analytical solution to determine transient temperature distributions in a finite solid when it is heated by a moving heat source. The analytical solution is obtained by solving the transient three-dimensional heat conduction equation in a finite domain by the method of separation of variables. Previous studies focus on analytical solutions for semi-infinite domains. In this study, for a moving heat source, the temperature field is obtained in a finite domain. The purpose of this study is to obtain an analytical solution to predict transient temperature distribution in a finite solid due to a moving heat source.


Author(s):  
M S Genç ◽  
G Özşik ◽  
H Yapicr

This study presents the effects of a moving heat source (MHS) on a rotating hollow steel disc heated from its one side surface under stagnant ambient conditions. As the disc rotates around the z-axis with a constant angular speed Ω, the heat source moves along from one radial segment to the next radial segment in the radial direction on the processed surface at the end of each revolution of the disc. Three-dimensional (3D) numerical calculations are performed individually for a wide range of thermal conductivity λ of steel and for different Ωs. In order to obtain the thermal stress per heat flux intensity q0, it is assumed that the thermo-physical properties of the disc do not change with temperature. The maximum effective thermal stress ratio varies in the range of 22–134 °C depending on λ and Ω. While the MHS passes from one radial segment to the next radial segment, it causes an additional steeping of the effective thermal stress. However, when the values of λ and Ω are increased, the maximum effective thermal stress ratio can be reduced by a considerable amount.


2010 ◽  
Author(s):  
Ivana Ivanovic ◽  
Aleksandar Sedmak ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras

Author(s):  
Elham Mirkoohi ◽  
Daniel E. Seivers ◽  
Hamid Garmestani ◽  
Steven Y. Liang

Selective laser melting is an emerging Additive Manufacturing (AM) technology for metals. Intricate three-dimensional parts can be generated from the powder bed by selectively melting the desired location of the powders. The process is repeated for each layer until the part is built. The necessary heat is provided by a laser. Temperature magnitude and history during SLM directly determine the molten pool dimensions, thermal stress, residual stress, balling effect, and dimensional accuracy. Laser-matter interaction is a crucial physical phenomenon in the SLM process. In this paper, five different heat source models are introduced to predict the three-dimensional temperature field analytically. These models are known as steady state moving point heat source, transient moving point heat source, semi-elliptical moving heat source, double elliptical moving heat source, and uniform moving heat source. The analytical temperature model for all of the heat source models are solved using three-dimensional differential equation of heat conduction with different approaches. The Steady state and transient moving heat source are solved using separation of variables approach. However, the rest of models are solved by employing the Green’s functions. Due to the high magnitude of the temperature in the presence of the laser, the temperature gradient is usually high which has a substantial impact on thermal material properties. Consequently, the temperature field is predicted by considering the temperature sensitivity thermal material properties. Moreover, due to the repeated heating and cooling, the part usually undergoes several melting and solidification cycles, this physical phenomenon is considered by modifying the heat capacity using latent heat of melting. Furthermore, the multi-layer aspect of metal AM process is considered by incorporating the temperature history from the previous layer since the interaction of the layers have an impact on heat transfer mechanisms. The proposed temperature field models based on different heat source approaches are validated using experimental measurement of melt pool geometry from independent experimentations. The detailed explanation of the comparison of models is also provided. Moreover, the effect of process parameters on the balling effect is also discussed.


Sign in / Sign up

Export Citation Format

Share Document