Tyrosine kinase activity of insulin-like growth factor I and insulin receptors in human endometrium during the menstrual cycle: Cyclic variation of insulin receptor expression

1993 ◽  
Vol 43 (1) ◽  
pp. 94-95
Author(s):  
T. Strowitzki ◽  
H.C. Von Eye ◽  
M. Kellerer ◽  
H.U. Haring
1987 ◽  
Vol 245 (2) ◽  
pp. 357-364 ◽  
Author(s):  
A D Blake ◽  
N S Hayes ◽  
E E Slater ◽  
C D Strader

A model of insulin-receptor down-regulation and desensitization has been developed and described. In this model, both insulin-receptor down-regulation and functional desensitization are induced in the human HepG2 cell line by a 16 h exposure of the cells to 0.1 microM-insulin. Insulin-receptor affinity is unchanged, but receptor number is decreased by 50%, as determined both by 125I-insulin binding and by protein immunoblotting with an antibody to the beta-subunit of the receptor. This down-regulation is accompanied by a disproportionate loss of insulin-stimulated glycogen synthesis, yielding a population of cell-surface insulin receptors which bind insulin normally but which are unable to mediate insulin-stimulated glycogen synthesis within the cell. Upon binding of insulin, the desensitized receptors are internalized rapidly, with characteristics indistinguishable from those of control cells. In contrast, this desensitization is accompanied by a loss of the insulin-sensitive tyrosine kinase activity of insulin receptors isolated from these cells. Receptors isolated from control cells show a 5-25-fold enhancement of autophosphorylation of the beta-subunit by insulin; this insulin-responsive autophosphorylation is severely attenuated after desensitization to a maximum of 0-2-fold stimulation by insulin. Likewise, the receptor-mediated phosphorylation of exogenous angiotensin II, which is stimulated 2-10-fold by insulin in receptors from control cells, is completely unresponsive to insulin in desensitized cells. These data provide evidence that the insulin-receptor tyrosine kinase activity correlates with insulin stimulation of an intracellular metabolic event. The data suggest that receptor endocytosis is not sufficient to mediate insulin's effects, and thereby argue for a role of the receptor tyrosine kinase activity in the mediation of insulin action.


1990 ◽  
Vol 122 (3) ◽  
pp. 361-368 ◽  
Author(s):  
Karoly Nagy ◽  
Joseph Levy ◽  
George Grunberger

Abstract High dietary fat intake causes glucose intolerance and insulin resistance in man and in laboratory rats. We studied possible mechanisms of this insulin resistance in rat kidney, muscle and liver. In high-fat fed rats the body weight, plasma insulin concentration, plasma glucose levels, and serum triglyceride concentration were significantly higher than in the control rats. 125I-insulin binding to kidney basolateral membrane insulin receptors from high-fat fed rats was lower than in control rats. Basal as well as insulin-stimulated tyrosine kinase activity per insulin receptor was higher in the highfat fed group, accompanied by increased autophosphorylation of the β-subunit of the receptor and higher proportion of tyrosine-phosphorylated insulin receptors. In contrast, both in the skeletal muscle and the liver the insulin-stimulated tyrosine kinase activity per insulin receptor was significantly lower in high-fat fed animals, accompanied by diminished autophosphorylation of the β-subunit of the receptor and lower proportion of tyrosinephosphorylated receptors. Our results indicate tissue-specific alterations in transmembrane signaling induced by high-fat feeding in target tissues for insulin which in turn might contribute to the observed insulin resistance.


Metabolism ◽  
1995 ◽  
Vol 44 (10) ◽  
pp. 1308-1313 ◽  
Author(s):  
James R. Sowers ◽  
David B. Jacobs ◽  
Lori Simpson ◽  
Bassam Al-Homsi ◽  
George Grunberger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document