Energy release rate and crack kinking

1981 ◽  
Vol 17 (1) ◽  
pp. 107-114 ◽  
Author(s):  
K. Hayashi ◽  
S. Nemat-Nasser
2001 ◽  
Author(s):  
Sami I. El-Sayed ◽  
Srinivasan Sridharan

Abstract The paper proposes models to track the face-core interfacial delamination growth and crack kinking into the sandwich core, respectively. The models consist in interposing a cohesive layer along a pre-existing delamination or an identified plane of crack propagation. The former, designated as CLD (cohesive layer delamination model) is investigated first in detail using an example of a restrained beam specimen. The Influence of the key parameters of the model, viz. the thickness of the cohesive layer and the strength and stiffness of the cohesive layer material, have been studied. It is found that the model is fairly robust and is not sensitive to changes in parameters other than the critical strain energy release rate. The second model is a highly simplified one, but it is nevertheless a comprehensive model which can track the crack path by identifying crack planes in various elements using a maximum tensile stress criterion. This is designated as CLDK model as it deal with delamination and crack kinking — whichever is the preferred mode of fracture. The models are constructed ensuring that the crack opening is controlled by the critical value of strain energy release rate in mode I fracture. Experimental results of two sandwich specimens, viz. bottom restrained beams with 0° and −10° tilt angle respectively were used for comparison. The results indicate that the both the models are able to capture the initiation and track the growth of the interfacial delamination. The CLDK model tracks the crack kinking into the core, and its subsequent return to the facesheet-core interface.


2018 ◽  
Vol 46 (3) ◽  
pp. 130-152
Author(s):  
Dennis S. Kelliher

ABSTRACT When performing predictive durability analyses on tires using finite element methods, it is generally recognized that energy release rate (ERR) is the best measure by which to characterize the fatigue behavior of rubber. By addressing actual cracks in a simulation geometry, ERR provides a more appropriate durability criterion than the strain energy density (SED) of geometries without cracks. If determined as a function of crack length and loading history, and augmented with material crack growth properties, ERR allows for a quantitative prediction of fatigue life. Complications arise, however, from extra steps required to implement the calculation of ERR within the analysis process. This article presents an overview and some details of a method to perform such analyses. The method involves a preprocessing step that automates the creation of a ribbon crack within an axisymmetric-geometry finite element model at a predetermined location. After inflating and expanding to three dimensions to fully load the tire against a surface, full ribbon sections of the crack are then incrementally closed through multiple solution steps, finally achieving complete closure. A postprocessing step is developed to determine ERR as a function of crack length from this enforced crack closure technique. This includes an innovative approach to calculating ERR as the crack length approaches zero.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 611
Author(s):  
Benshuai Chen ◽  
Guangchun Xiao ◽  
Mingdong Yi ◽  
Jingjie Zhang ◽  
Tingting Zhou ◽  
...  

In this paper, the Voronoimosaic model and the cohesive element method were used to simulate crack propagation in the microstructure of alumina/graphene composite ceramic tool materials. The effects of graphene characteristic size and volume content on the crack propagation behavior of microstructure model of alumina/graphene composite ceramics under different interfacial bonding strength were studied. When the phase interface is weak, the average energy release rate is the highest as the short diameter of graphene is 10–50 nm and the long diameter is 1600–2000 nm. When the phase interface is strong, the average energy release rate is the highest as the short diameter of graphene is 50–100 nm and the long diameter is 800–1200 nm. When the volume content of graphene is 0.50 vol.%, the average energy release rate reaches the maximum. When the velocity load is 0.005 m s−1, the simulation result is convergent. It is proven that the simulation results are in good agreement with the experimental phenomena.


Sign in / Sign up

Export Citation Format

Share Document