An in situ calibration technique for the determination of large particle aspiration efficiencies of TSP samplers: The stop distance concept

1990 ◽  
Vol 21 (1) ◽  
pp. 41-46 ◽  
Author(s):  
W. Holla¨nder ◽  
W. Blomesath ◽  
A. Beyer
2019 ◽  
Vol 219 ◽  
pp. 08003
Author(s):  
Maja Verstraeten

The SoLid Collaboration is currently operating a 1.6 ton neutrino detector near the Belgian BR2 reactor. Its main goal is the observation of the oscillation of electron antineutrinos to previously undetected flavour states. The highly segmented SoLid detector employs a compound scintillation technology based on PVT scintillator in combination with LiF-ZnS(Ag) screens containing the 6Li isotope. The experiment has demonstrated a channel-to-channel response that can be controlled to the level of a few percent, an energy resolution of better than 14% at 1 MeV, and a determination of the interaction vertex with a precision of 5 cm. This contribution highlights the major outcomes of the R&D program, the quality control during component manufacture and integration, the current performance and stability of the full-scale system, as well as the in-situ calibration of the detector with various radioactive sources.


2006 ◽  
Vol 81 (8-14) ◽  
pp. 1497-1502 ◽  
Author(s):  
K. Asai ◽  
T. Iguchi ◽  
T. Nishitani ◽  
C.I. Walker ◽  
J. Kawarabayashi ◽  
...  

2001 ◽  
Vol 280 (6) ◽  
pp. C1623-C1633 ◽  
Author(s):  
Abdoullah Diarra ◽  
Claire Sheldon ◽  
John Church

Despite the popularity of Na+-binding benzofuran isophthalate (SBFI) to measure intracellular free Na+ concentrations ([Na+]i), the in situ calibration techniques described to date do not favor the straightforward determination of all of the constants required by the standard equation (Grynkiewicz G, Poenie M, and Tsien RY. J Biol Chem 260: 3440–3450, 1985) to convert the ratiometric signal into [Na+]. We describe a simple method in which SBFI ratio values obtained during a “full” in situ calibration are fit by a three-parameter hyperbolic equation; the apparent dissociation constant ( K d) of SBFI for Na+ can then be resolved by means of a three-parameter hyperbolic decay equation. We also developed and tested a “one-point” technique for calibrating SBFI ratios in which the ratio value obtained in a neuron at the end of an experiment during exposure to gramicidin D and 10 mM Na+is used as a normalization factor for ratios obtained during the experiment; each normalized ratio is converted to [Na+]i using a modification of the standard equation and parameters obtained from a full calibration. Finally, we extended the characterization of the pH dependence of SBFI in situ. Although the K d of SBFI for Na+ was relatively insensitive to changes in pH in the range 6.8–7.8, acidification resulted in an apparent decrease, and alkalinization in an apparent increase, in [Na+]i values. The magnitudes of the apparent changes in [Na+]ivaried with absolute [Na+]i, and a method was developed for correcting [Na+]i values measured with SBFI for changes in intracellular pH.


1984 ◽  
Vol 23 (5) ◽  
pp. 762 ◽  
Author(s):  
Daniel Pasini ◽  
Andrew Ng ◽  
A. J. Barnard

2016 ◽  
Vol 50 (17) ◽  
pp. 9469-9478 ◽  
Author(s):  
Bruce Petrie ◽  
Anthony Gravell ◽  
Graham A. Mills ◽  
Jane Youdan ◽  
Ruth Barden ◽  
...  

2021 ◽  
Author(s):  
Lars Ceranna ◽  
Thomas Bruns ◽  
Christian Koch ◽  
Dominique Rodrigues ◽  
Stephen Robinson ◽  
...  

<p>Infra-AUV is a new EU project that will establish primary measurements standards for low frequency phenomena across the fields of airborne and underwater acoustics and vibration (seismology). Combining expertise from the national measurement institutes and geophysical monitoring station operators, it will develop both high-precision laboratory-based methods of calibration and methods suitable for field use. Infra-AUV will also address requirements for reference sensors that link laboratory calibration capabilities to field requirements for measurement traceability.</p><p>To establish standards in the three technical areas, a variety of calibration principles will be employed, including extension of existing techniques such as reciprocity and optical interferometry, and development of new methods. There will also be an investigation of the potential for in-situ calibration methods, including use of both artificially generated and naturally occurring stimuli such as microseisms and microbaroms. The influence of calibration uncertainties on the determination of the measurands required by the monitoring networks will also be studied.</p><p>The project was strongly motivated by the CTBTO strategy to drive new metrology capability to underpin IMS data. The intention is to maintain interaction with stakeholders, not only in connection with the IMS, but with the broad range of users of low frequency acoustic and vibration data. </p>


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
M. Lorenz ◽  
T. Horbach ◽  
A. Schulz ◽  
H.-J. Bauer

A novel method for surface temperature measurement using temperature sensitive paint (TSP) is presented. Precalibration of the TSP is shown and a semi in situ calibration technique using thermocouples is provided for high accuracy measurement. The method presented is applied to a film cooling experiment with a maximum surface temperature of 430 K and compared to highly reliable infrared thermography measurements that serve as benchmark results. The in situ calibration technique shows a maximum deviation of 0.5 K from the thermocouple readings. The comparison of laterally averaged temperature distributions of TSP and infrared measurement shows excellent agreement.


2004 ◽  
Vol 455-456 ◽  
pp. 78-83 ◽  
Author(s):  
M.W. Wang ◽  
F.H. Tsai ◽  
Y.F. Chao

Sign in / Sign up

Export Citation Format

Share Document