16 O 01 Sun-photometer measurements of solar radiation extinction produced by the Pinatubo aerosol cloud in the Himalayan region

1993 ◽  
Vol 24 ◽  
pp. S109-S110 ◽  
Author(s):  
V. Vitale ◽  
C. Tomasi
2019 ◽  
Author(s):  
Radiance Calmer ◽  
Gregory C. Roberts ◽  
Kevin J. Sanchez ◽  
Jean Sciare ◽  
Karine Sellegri ◽  
...  

Abstract. In the framework of the EU-FP7 BACCHUS project, an intensive field campaign was performed in Cyprus (2015/03). Remotely Piloted Aircraft System (RPAS), ground-based instruments, and remote-sensing observations were operating in parallel to provide an integrated characterization of aerosol-cloud interactions. Remotely Piloted Aircraft (RPA) were equipped with a 5-hole probe, pyranometers, pressure, temperature and humidity sensors, and measured updraft velocity at cloud base and cloud optical properties of a stratocumulus layer. Ground-based measurements of dry aerosol size distributions and cloud condensation nuclei spectra, and RPA observations of vertical wind velocity and meteorological state parameters are used here to initialize an Aerosol–Cloud Parcel Model (ACPM) and compare the in situ observations of cloud optical properties measured by the RPA to those simulated in the ACPM. Two different cases are studied with the ACPM, including an adiabatic case and an entrainment case, in which the in-cloud temperature profile from RPA is taken into account. Adiabatic ACPM simulation yields cloud droplet number concentrations at cloud base (ca. 400 cm−3) that are similar to those derived from a Hoppel minimum analysis. Cloud optical properties have been inferred using the transmitted fraction of shortwave radiation profile measured by downwelling and upwelling pyranometers mounted on a RPA, and the observed transmitted fraction of solar radiation is then compared to simulations from the ACPM. ACPM simulations and RPA observations show better agreement when associated with entrainment compared to that of an adiabatic case. The mean difference between observed and adiabatic profiles of transmitted fraction of solar radiation is 0.12, while this difference is only 0.03 between observed and entrainment profiles. A sensitivity calculation is then conducted to quantify the relative impacts of two-fold changes in aerosol concentration, and updraft velocity to highlight the importance of accounting for the impact of entrainment in deriving cloud optical properties, as well as the ability of RPAs to leverage ground-based observations for studying aerosol–cloud interactions.


2008 ◽  
Vol 8 (6) ◽  
pp. 20349-20397 ◽  
Author(s):  
T. A. Jones ◽  
S. A. Christopher ◽  
J. Quaas

Abstract. Since aerosols act as cloud condensation nuclei (CCN) for cloud water droplets, changes in aerosol concentrations having significant impacts on the corresponding cloud properties. An increase in aerosol concentration leads to an increase in CCN, with an associated decrease in cloud droplet size for a given cloud liquid water content. Smaller droplet sizes may then lead to a reduction in precipitation efficiency and an increase in cloud lifetimes, which induces more reflection of solar radiation back into space, cooling the atmosphere below the cloud layer. In reality, this relationship is much more complex and is interrelated between aerosol, cloud, and atmospheric conditions present at any one time. MODIS aerosol and cloud properties are combined with NCEP Reanalysis data for eight different regions around the globe between March 2000 and December 2005 to study the effects of different aerosol, cloud, and atmospheric conditions on the aerosol indirect effect (AIE). The first AIE for both anthropogenic and dust aerosols is calculated so that the importance of each can be compared. The unique aspect of this research is that it combines multiple satellite data sets over a six year period to provide a comprehensive analysis of indirect effects for different aerosol regimes around the globe. Results show that in most regions, AIE has a distinct seasonal cycle, though the cycle varies in significance and period from region to region. In the Arabian Sea, the six-year mean anthropogenic + dust AIE is −0.4 Wm−2 and is greatest during the summer months (<−2.0 Wm−2) during which dust aerosol concentration is greatest, significant concentrations of anthropogenic aerosols are present, and upward vertical motion is also present providing a favorable environment for cloud formation. In the Bay of Bengal, AIE was negligible owing to less favorable atmospheric conditions and a lower concentration of aerosols. In the eastern North Atlantic, AIE was also small (<0.1 Wm−2) and in this region dust aerosol concentration is much greater than the anthropogenic or sea salt components. However, elevated dust in this region may also absorb solar radiation and warm the atmosphere, stabilizing the atmosphere as evidenced by weak vertical motion during the summer (0.02 Pa s−1) when AOT is greatest. Lower average cloud fraction compared to other regions allows the absorbing effect to offset the cooling effect associated with increasing CCN. The western Atlantic and Pacific oceans have large anthropogenic aerosol concentrations transported from the United States and China respectively and produce modest anthropogenic AIE (0.7, 0.9 Wm−2) in these regions as expected. Anthropogenic AIE was also present off the West African coast corresponding to aerosols produced from seasonal biomass burning. Interestingly, atmospheric conditions were not particularly favorable for cloud formation compared to the other regions during the times where AIE was observed. Overall, we are able to conclude that aerosol type, atmospheric conditions and their relative vertical distributions are a key factors as to whether or not significant AIE occurs and simple correlations between AOT and cloud properties are insufficient to explain the AIE.


Author(s):  
Ashutosh Sharma ◽  
Mehmet Ali Kallioğlu ◽  
Anchal Awasthi ◽  
Ranchan Chauhan ◽  
Gusztáv Fekete ◽  
...  

2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Apurv Kumar ◽  
Jin-Soo Kim ◽  
Wojciech Lipiński

Radiation absorption is investigated in a particle curtain formed in a solar free-falling particle receiver. An Eulerian–Eulerian granular two-phase model is used to solve the two-dimensional mass and momentum equations by employing computational fluid dynamics (CFD) to find particle distribution in the curtain. The radiative transfer equation (RTE) is subsequently solved by the Monte Carlo (MC) ray-tracing technique to obtain the radiation intensity distribution in the particle curtain. The predicted opacity is validated with the experimental results reported in the literature for 280 and 697 μm sintered bauxite particles. The particle curtain is found to absorb the solar radiation most efficiently at flowrates upper-bounded at approximately 20 kg s−1 m−1. In comparison, 280 μm particles have higher average absorptance than 697 μm particles (due to higher radiation extinction characteristics) at similar particle flowrates. However, as the absorption of solar radiation becomes more efficient, nonuniform radiation absorption across the particle curtain and hydrodynamic instability in the receiver are more probable.


2019 ◽  
Vol 19 (22) ◽  
pp. 13989-14007 ◽  
Author(s):  
Radiance Calmer ◽  
Gregory C. Roberts ◽  
Kevin J. Sanchez ◽  
Jean Sciare ◽  
Karine Sellegri ◽  
...  

Abstract. In the framework of the EU-FP7 BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) project, an intensive field campaign was performed in Cyprus (March 2015). Remotely piloted aircraft system (RPAS), ground-based instruments, and remote-sensing observations were operating in parallel to provide an integrated characterization of aerosol–cloud interactions. Remotely piloted aircraft (RPA) were equipped with a five-hole probe, pyranometers, pressure, temperature and humidity sensors, and measured vertical wind at cloud base and cloud optical properties of a stratocumulus layer. Ground-based measurements of dry aerosol size distributions and cloud condensation nuclei spectra, and RPA observations of updraft and meteorological state parameters are used here to initialize an aerosol–cloud parcel model (ACPM) and compare the in situ observations of cloud optical properties measured by the RPA to those simulated in the ACPM. Two different cases are studied with the ACPM, including an adiabatic case and an entrainment case, in which the in-cloud temperature profile from RPA is taken into account. Adiabatic ACPM simulation yields cloud droplet number concentrations at cloud base (approximately 400 cm−3) that are similar to those derived from a Hoppel minimum analysis. Cloud optical properties have been inferred using the transmitted fraction of shortwave radiation profile measured by downwelling and upwelling pyranometers mounted on a RPA, and the observed transmitted fraction of solar radiation is then compared to simulations from the ACPM. ACPM simulations and RPA observations shows better agreement when associated with entrainment compared to that of an adiabatic case. The mean difference between observed and adiabatic profiles of transmitted fraction of solar radiation is 0.12, while this difference is only 0.03 between observed and entrainment profiles. A sensitivity calculation is then conducted to quantify the relative impacts of 2-fold changes in aerosol concentration, and updraft to highlight the importance of accounting for the impact of entrainment in deriving cloud optical properties, as well as the ability of RPAs to leverage ground-based observations for studying aerosol–cloud interactions.


2022 ◽  
Vol 51 ◽  
pp. 101991
Author(s):  
Elena Carra ◽  
Jesús Ballestrín ◽  
Rafael Monterreal ◽  
Raúl Enrique ◽  
Jesús Polo ◽  
...  

2020 ◽  
Vol 13 (6) ◽  
pp. 2511-2532
Author(s):  
Vasileios Pavlidis ◽  
Eleni Katragkou ◽  
Andreas Prein ◽  
Aristeidis K. Georgoulias ◽  
Stergios Kartsios ◽  
...  

Abstract. In this work we present downscaling experiments with the Weather Research and Forecasting model (WRF) to test the sensitivity to resolving aerosol–radiation and aerosol–cloud interactions on simulated regional climate for the EURO-CORDEX domain. The sensitivities mainly focus on the aerosol–radiation interactions (direct and semi-direct effects) with four different aerosol optical depth datasets (Tegen, MAC-v1, MACC, GOCART) being used and changes to the aerosol absorptivity (single scattering albedo) being examined. Moreover, part of the sensitivities also investigates aerosol–cloud interactions (indirect effect). Simulations have a resolution of 0.44∘ and are forced by the ERA-Interim reanalysis. A basic evaluation is performed in the context of seasonal-mean comparisons to ground-based (E-OBS) and satellite-based (CM SAF SARAH, CLARA) benchmark observational datasets. The impact of aerosols is calculated by comparing it against a simulation that has no aerosol effects. The implementation of aerosol–radiation interactions reduces the direct component of the incoming surface solar radiation by 20 %–30 % in all seasons, due to enhanced aerosol scattering and absorption. Moreover the aerosol–radiation interactions increase the diffuse component of surface solar radiation in both summer (30 %–40 %) and winter (5 %–8 %), whereas the overall downward solar radiation at the surface is attenuated by 3 %–8 %. The resulting aerosol radiative effect is negative and is comprised of the net effect from the combination of the highly negative direct aerosol effect (−17 to −5 W m−2) and the small positive changes in the cloud radiative effect (+5 W m−2), attributed to the semi-direct effect. The aerosol radiative effect is also stronger in summer (−12 W m−2) than in winter (−2 W m−2). We also show that modelling aerosol–radiation and aerosol–cloud interactions can lead to small changes in cloudiness, mainly regarding low-level clouds, and circulation anomalies in the lower and mid-troposphere, which in some cases, mainly close to the Black Sea in autumn, can be of statistical significance. Precipitation is not affected in a consistent pattern throughout the year by the aerosol implementation, and changes do not exceed ±5 % except for the case of unrealistically absorbing aerosol. Temperature, on the other hand, systematically decreases by −0.1 to −0.5 ∘C due to aerosol–radiation interactions with regional changes that can be up to −1.5 ∘C.


Sign in / Sign up

Export Citation Format

Share Document