Acute physical exercise alters apolipoprotein E and C-III concentrations of apo E-rich very low density lipoprotein fraction

1992 ◽  
Vol 97 (1) ◽  
pp. 37-51 ◽  
Author(s):  
Lavy Klein ◽  
Todd D. Miller ◽  
Teresa E. Radam ◽  
Timothy O'Brien ◽  
Tu T. Nguyen ◽  
...  
2020 ◽  
Vol 40 (3) ◽  
pp. 819-829 ◽  
Author(s):  
Mikaël Croyal ◽  
Valentin Blanchard ◽  
Khadija Ouguerram ◽  
Maud Chétiveaux ◽  
Léa Cabioch ◽  
...  

2000 ◽  
Vol 347 (2) ◽  
pp. 357-361 ◽  
Author(s):  
Paul J. TACKEN ◽  
Femke DE BEER ◽  
Leonie C. VAN VARK ◽  
Louis M. HAVEKES ◽  
Marten H. HOFKER ◽  
...  

The apolipoprotein (apo)E receptor 2 (apoER2) is a recently cloned member of the low-density lipoprotein (LDL) receptor (LDLR) family, showing a high homology with both the LDLR and the very-low-density lipoprotein (VLDL) receptor (VLDLR). In the present study, the binding characteristics of the apoER2 with respect to apoE and lipoprotein lipase (LPL) were investigated. VLDL was isolated from both apoE-deficient mice and mice expressing the human APOE2 (Arg158 → Cys) and APOE3-Leiden isoforms on an Apoe-/-,Ldlr-/- double knock-out background. apoE-rich rabbit β-VLDL was used as a positive control for binding. Binding experiments performed with Chinese hamster ovary cells expressing the human apoER2 showed that the receptor was able to bind VLDL containing either of the apoE isoforms, as well as the apoE-deficient VLDL. Hence, in contrast with the VLDLR, the apoER2 is not strictly dependent on apoE for VLDL binding. Since LPL has been shown to enhance the binding of lipoproteins to several members of the LDLR family, including the LDLR-related protein, VLDL receptor, gp330 and the LDLR itself, VLDL binding experiments were performed in the presence of LPL. Addition of LPL resulted in a significant increase in apoER2 binding for all VLDL fractions used in this study. In conclusion, lipoprotein binding of VLDL to the apoER2 is enhanced in the presence of LPL, and is not restricted to apoE-containing lipoproteins.


1987 ◽  
Vol 65 (3) ◽  
pp. 252-260 ◽  
Author(s):  
S. P. Tam ◽  
W. C. Breckenridge

The nature of the interaction of high density lipoproteins (HDL), formed during lipolysis of human very low density lipoprotein (VLDL) by perfused rat heart, with subfractions of human plasma HDL was investigated. Perfusate HDL, containing apoliproproteins (apo) E, C-II, and C-III but no apo A-I or A-II, was incubated with a subfraction of HDL (HDL-A) containing apo A-I and A-II, but devoid of apo C-II, C-III, and E. The products of the incubation were resolved by heparin-Sepharose or hydroxylapatite chromatography under conditions which allowed the resolution of the initial HDL-A and perfusate HDL. The fractions were analyzed for apolipoprotein content and lipid composition and assessed for particle size by electron microscopy. Following the incubation, the apo-E-containing lipoproteins were distinct from perfusate HDL since they contained apo A-I as a major component and apo C-II and C-III in reduced proportions. However, the HDL-A fraction contained apo C-II and C-III as major constituents. Associated with these changes in apolipoprotein composition, the apo-E-rich lipoproteins acquired cholesteryl ester from the HDL-A fraction and lost phospholipid to the HDL-A fraction. The HDL-A fraction maintained a low unesterified cholesterol/phospholipid molar ratio (0.23), while the apo-E-containing lipoproteins possessed a high ratio (0.75) characteristic of the perfusate HDL. The particle size of apo-E-containing lipoproteins (138.9 ± 22.5 Å; 1 Å = 0.1 nm) was larger than the initial HDL-A (126.5 ± 17.6 Å) or the new HDL-A-like fraction (120.9 ± 17.4 Å) obtained following incubation with perfusate HDL. It is concluded that incubation of perfusate HDL containing apo E, C-II, and C-III with plasma HDL subfractions results in the acquisition of apo A-I and cholesteryl esters by the apo-E-containing perfusate HDL and the loss of apo C-II, C-III, and phospholipid to the plasma HDL-A fraction. The process does not appear to be due to fusion of the particles, since the apo-E-containing lipoproteins maintain a cholesterol/phospholipid ratio distinct from the HDL-A fraction. The data provide evidence for a potential mechanism for the formation of HDL-E, an apo-E-containing lipoprotein of HDL size and density, through lipolysis of VLDL.


2000 ◽  
Vol 151 (1) ◽  
pp. 158 ◽  
Author(s):  
Y. Huang ◽  
W.J. Brecht ◽  
X.Q. Liu ◽  
Y. Wang ◽  
J.M. Taylor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document