Mechanism of foam cell formation by intimal smooth muscle cells through getting expression of VLDL receptor

1995 ◽  
Vol 115 ◽  
pp. S25
Author(s):  
I. Itsuko ◽  
H. Kawachi ◽  
S. Hirose ◽  
N. Morisaki ◽  
T. Yamamoto ◽  
...  
Author(s):  
Joshua A. Dubland ◽  
Sima Allahverdian ◽  
Katrina J. Besler ◽  
Carleena Ortega ◽  
Ying Wang ◽  
...  

Objective: We previously reported smooth muscle cells (SMCs) represent ≥50% of foam cells in human coronary and ≈70% in apoE (apolipoprotein E)-deficient mouse aortic atheromas and exhibit reduced expression of the cholesterol exporter ABCA1 (ATP-binding cassette transporter A1). A major stimulus for ABCA1 expression is flux of cholesterol out of lysosomes, generated by hydrolysis of lipoprotein cholesteryl esters by LAL (lysosomal acid lipase). In this study, we investigated the potential role lysosomal dysfunction might play in foam cell formation by arterial SMCs. Approach and Results: Human monocyte-derived macrophages (macrophages) and arterial SMCs were treated with aggregated LDL (low-density lipoprotein) to increase intracellular cholesterol and investigated for lysosomal and postlysosomal cholesterol metabolism defects. Human and mouse atheromas were analyzed for LAL expression. Unlike macrophages, aggregated LDL uptake failed to upregulate ABCA1 expression, downregulate new cholesterol synthesis, or to significantly increase 27-hydroxycholesterol levels in SMCs. Confocal microscopy revealed retention of neutral lipids within lysosomal compartments in SMCs, while macrophages showed most lipids as cytosolic droplets. LIPA mRNA levels and LAL protein were markedly reduced in SMCs. Treatment of SMCs with medium containing LAL resulted in significantly reduced lysosomal lipid accumulation and increased cholesterol efflux to apoA-I (apolipoprotein AI). Human and mouse atheromas exhibited low LAL/ Lipa expression in intimal SMCs when compared with intimal macrophages. Conclusions: These findings indicate the inherently low level of LAL in SMCs compared with macrophages is associated with reduced capacity to catabolize atherogenic lipoproteins and is a mechanism for SMC foam cell formation in atherosclerosis.


2019 ◽  
Vol 26 (9) ◽  
pp. 1693-1700 ◽  
Author(s):  
Ajoe John Kattoor ◽  
Sri Harsha Kanuri ◽  
Jawahar L. Mehta

Oxidized LDL (ox-LDL) plays a central role in atherosclerosis by acting on multiple cells such as endothelial cells, macrophages, platelets, fibroblasts and smooth muscle cells through LOX-1. LOX-1 is a 50 kDa transmembrane glycoprotein that serves as receptor for ox-LDL, modified lipoproteins, activated platelets and advance glycation end-products. Ox- LDL through LOX-1, in endothelial cells, causes increase in leukocyte adhesion molecules, activates pathways of apoptosis, increases reactive oxygen species and cause endothelial dysfunction. In vascular smooth muscle cells and fibroblasts, they stimulate proliferation, migration and collagen synthesis. LOX-1 expressed on macrophages inhibit macrophage migration and stimulate foam cell formation. They also stimulate generation of metalloproteinases and contribute to plaque instability and thrombosis. Drugs that modulate LOX-1 are desirable targets against atherosclerosis. Many naturally occurring compounds have been shown to modulate LOX-1 expression and atherosclerosis. Currently, novel drug design techniques are used to identify molecules that can bind to LOX-1 and inhibit its activation by ox-LDL. In addition, techniques using RNA interference and monoclonal antibody against LOX-1 are currently being investigated for clinical use.


Sign in / Sign up

Export Citation Format

Share Document