Ray tracings of acoustic waves in the upper atmosphere

1963 ◽  
Vol 25 (11) ◽  
pp. 621-629 ◽  
Author(s):  
G. Barry
2021 ◽  
Author(s):  
James O'Donoghue ◽  
Luke Moore ◽  
Tanapat Bhakyapaibul ◽  
Henrik Melin ◽  
Tom Stallard ◽  
...  

<p>Jupiter's upper atmosphere is significantly hotter than expected based on the amount of solar heating it receives. This temperature discrepency is known as the 'energy crisis' due to it's nearly 50-year duration and the fact it also occurs at Saturn, Uranus and Neptune. At Jupiter, magnetosphere-ionosphere coupling gives rise to intense auroral emissions and enormous energy deposition in the magnetic polar regions, so it was presumed long ago that redistribution of this energy could heat the rest of the planet. However, most global circulation models have difficulty redistributing auroral energy globally due to the strong Coriolis forces and ion drag on this rapidly rotating planet. Consequently, other possible heat sources have continued to be studied, such as heating by gravity and acoustic waves emanating from the lower atmosphere. Each global heating mechanism would imprint a unique signature on global temperature gradients, thus revealing the dominant heat source, but these gradients have not been determined due a lack of planet-wide, high-resolution data. The last global map of Jovian upper-atmospheric temperatures was produced using ground-based data taken in 1993, in which the region between 45<sup>o</sup> latitude (north & south) and the poles was represented by just 2 pixels. As a result, those maps did not (or could not) show a clear temperature gradient, and furthermore, they even showed regions of hot atmosphere near the equator, supporting the idea of an equatorial heat source, e.g. gravity and/or acoustic wave heating. Therefore observationally and from a modeling perspective, a concensus has not been reached to date. Here we report new infrared spectroscopy of Jupiter's major upper-atmospheric ion H<sub>3</sub><sup>+</sup>, with a spatial resolution of 2<sup>o</sup> longitude and latitude extending from pole to equator, capable of tracing the global temperature gradients. We find that temperatures decrease steadily from the auroral polar regions to the equator. Further, during a period of enhanced activity possibly driven by a solar wind compression, a high-temperature planetary-scale structure was observed which may be propagating from the aurora. These observations indicate that Jupiter's upper atmosphere is predominantly heated via the redistribution of auroral energy, and therefore that Coriolis forces and ion drag are observably overcome.</p>


Nature ◽  
2021 ◽  
Vol 596 (7870) ◽  
pp. 54-57
Author(s):  
J. O’Donoghue ◽  
L. Moore ◽  
T. Bhakyapaibul ◽  
H. Melin ◽  
T. Stallard ◽  
...  

AbstractJupiter’s upper atmosphere is considerably hotter than expected from the amount of sunlight that it receives1–3. Processes that couple the magnetosphere to the atmosphere give rise to intense auroral emissions and enormous deposition of energy in the magnetic polar regions, so it has been presumed that redistribution of this energy could heat the rest of the planet4–6. Instead, most thermospheric global circulation models demonstrate that auroral energy is trapped at high latitudes by the strong winds on this rapidly rotating planet3,5,7–10. Consequently, other possible heat sources have continued to be studied, such as heating by gravity waves and acoustic waves emanating from the lower atmosphere2,11–13. Each mechanism would imprint a unique signature on the global Jovian temperature gradients, thus revealing the dominant heat source, but a lack of planet-wide, high-resolution data has meant that these gradients have not been determined. Here we report infrared spectroscopy of Jupiter with a spatial resolution of 2 degrees in longitude and latitude, extending from pole to equator. We find that temperatures decrease steadily from the auroral polar regions to the equator. Furthermore, during a period of enhanced activity possibly driven by a solar wind compression, a high-temperature planetary-scale structure was observed that may be propagating from the aurora. These observations indicate that Jupiter’s upper atmosphere is predominantly heated by the redistribution of auroral energy.


Laser Physics ◽  
2010 ◽  
Vol 20 (1) ◽  
pp. 298-301
Author(s):  
A. R. Aramyan ◽  
G. A. Galechyan ◽  
G. G. Harutunyan ◽  
G. V. Manukyan

1964 ◽  
Vol 17 (4) ◽  
pp. 480 ◽  
Author(s):  
GG Bowman

The occurrence of high� multiple reflections (10 hops and more) from the F. layer of the ionosphere at night is considered. Sunspot-cycle, annual, and diurnal variations are presented. The sunspot. cycle and annual variations are similar to those for the upper-atmosphere neutral particle density. Periodicities in occurrence of around 60 min are found. Associations are found between high-multiple trace occurrence and sunset and sunrise times at the 90 km level. Ionospheric irregularities which are present at the time of high.multiple reflections indicate that these reflec� tions are probably not due to focusing effects. Evidence is presented to support a mechanism involving the reduction of non�deviative absorption to explain these reflections. This reduction may be caused by acoustic waves propagating in the high atmosphere.


Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


1998 ◽  
Vol 77 (5) ◽  
pp. 1195-1202
Author(s):  
Andreas Knabchen Yehoshua, B. Levinson, Ora

1979 ◽  
Vol 40 (C8) ◽  
pp. C8-336-C8-340 ◽  
Author(s):  
Dr. J.A. GALLEGO-JUAREZ ◽  
L. GAETE-GARRETON

Sign in / Sign up

Export Citation Format

Share Document