Atmospheric transport processes. Part 2: Chemical tracers

1971 ◽  
Vol 33 (11) ◽  
pp. 1799-1800
Author(s):  
L. Thomas
2008 ◽  
Vol 8 (10) ◽  
pp. 2811-2832 ◽  
Author(s):  
K. Zhang ◽  
H. Wan ◽  
M. Zhang ◽  
B. Wang

Abstract. The radioactive species radon (222Rn) has long been used as a test tracer for the numerical simulation of large scale transport processes. In this study, radon transport experiments are carried out using an atmospheric GCM with a finite-difference dynamical core, the van Leer type FFSL advection algorithm, and two state-of-the-art cumulus convection parameterization schemes. Measurements of surface concentration and vertical distribution of radon collected from the literature are used as references in model evaluation. The simulated radon concentrations using both convection schemes turn out to be consistent with earlier studies with many other models. Comparison with measurements indicates that at the locations where significant seasonal variations are observed in reality, the model can reproduce both the monthly mean surface radon concentration and the annual cycle quite well. At those sites where the seasonal variation is not large, the model is able to give a correct magnitude of the annual mean. In East Asia, where radon simulations are rarely reported in the literature, detailed analysis shows that our results compare reasonably well with the observations. The most evident changes caused by the use of a different convection scheme are found in the vertical distribution of the tracer. The scheme associated with weaker upward transport gives higher radon concentration up to about 6 km above the surface, and lower values in higher altitudes. In the lower part of the atmosphere results from this scheme does not agree as well with the measurements as the other scheme. Differences from 6 km to the model top are even larger, although we are not yet able to tell which simulation is better due to the lack of observations at such high altitudes.


2020 ◽  
Vol 20 (2) ◽  
pp. 1163-1181
Author(s):  
Michal T. Filus ◽  
Elliot L. Atlas ◽  
Maria A. Navarro ◽  
Elena Meneguz ◽  
David Thomson ◽  
...  

Abstract. The effectiveness of transport of short-lived halocarbons to the upper troposphere and lower stratosphere remains an important uncertainty in quantifying the supply of ozone-depleting substances to the stratosphere. In early 2014, a major field campaign in Guam in the western Pacific, involving UK and US research aircraft, sampled the tropical troposphere and lower stratosphere. The resulting measurements of CH3I, CHBr3 and CH2Br2 are compared here with calculations from a Lagrangian model. This methodology benefits from an updated convection scheme that improves simulation of the effect of deep convective motions on particle distribution within the tropical troposphere. We find that the observed CH3I, CHBr3 and CH2Br2 mixing ratios in the tropical tropopause layer (TTL) are consistent with those in the boundary layer when the new convection scheme is used to account for convective transport. More specifically, comparisons between modelled estimates and observations of short-lived CH3I indicate that the updated convection scheme is realistic up to the lower TTL but is less good at reproducing the small number of extreme convective events in the upper TTL. This study consolidates our understanding of the transport of short-lived halocarbons to the upper troposphere and lower stratosphere by using improved model calculations to confirm consistency between observations in the boundary layer, observations in the TTL and atmospheric transport processes. Our results support recent estimates of the contribution of short-lived bromocarbons to the stratospheric bromine budget.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Don R. Reynolds ◽  
Andrew M. Reynolds ◽  
Jason W. Chapman

AbstractAnimal migration is often defined in terms appropriate only to the ‘to-and-fro’ movements of large, charismatic (and often vertebrate) species. However, like other important biological processes, the definition should apply over as broad a taxonomic range as possible in order to be intellectually satisfying. Here we illustrate the process of migration in insects and other terrestrial arthropods (e.g. arachnids, myriapods, and non-insect hexapods) but provide a different perspective by excluding the ‘typical’ mode of migration in insects, i.e. flapping flight. Instead, we review non-volant migratory movements, including: aerial migration by wingless species, pedestrian and waterborne migration, and phoresy. This reveals some fascinating and sometimes bizarre morphological and behavioural adaptations to facilitate movement. We also outline some innovative modelling approaches exploring the interactions between atmospheric transport processes and biological factors affecting the ‘dispersal kernels’ of wingless arthropods


2015 ◽  
Vol 15 (21) ◽  
pp. 31053-31087 ◽  
Author(s):  
Y. Chen ◽  
Y. F. Cheng ◽  
S. Nordmann ◽  
W. Birmili ◽  
H. A. C. Denier van der Gon ◽  
...  

Abstract. Elemental Carbon (EC) has significant impact on human health and climate change. In order to evaluate the size segregation of EC emission and investigation of its influence on atmospheric transport processes in Europe, we used the fully coupled online Weather Research and Forecasting/Chemistry model (WRF-Chem) at a resolution of 2 km focusing on a region in Germany, in conjunction with a high-resolution EC emission inventory. The ground meteorology conditions, vertical structure and wind pattern were well reproduced by the model. The simulations of particle number/mass size distributions were evaluated by observations taken at the central European background site Melpitz. The fine mode aerosol was reasonably well simulated, but the coarse mode was substantially overestimated by the model. We found that it was mainly due to the nearby point source plume emitting a high amount of EC in the coarse mode. The comparisons between simulated EC and Multi-angle Absorption Photometers (MAAP) measurements at Melpitz, Leipzig-TROPOS and Bösel indicated that coarse mode EC (ECc) emission in the nearby point sources might be overestimated by a factor of 2–10. The emission fraction of EC in coarse mode was overestimated by about 10–30 % for Russian and 5–10 % for Eastern Europe (e.g.: Poland and Belarus), respectively. This overestimation in ECc emission fraction makes EC particles having less opportunity to accumulate in the atmosphere and participate to the long range transport, due to the shorter lifetime of coarse mode aerosol. The deposition concept model showed that the transported EC mass from Warsaw and Moskva to Melpitz may be reduced by 25–35 and 25–55 % respectively, due to the overestimation of ECc emission fraction. This may partly explain the underestimation of EC concentrations for Germany under eastern wind pattern in some other modelling research.


2005 ◽  
Vol 5 (5) ◽  
pp. 8649-8688 ◽  
Author(s):  
M. I. Hegglin ◽  
D. Brunner ◽  
Th. Peter ◽  
P. Hoor ◽  
H. Fischer ◽  
...  

Abstract. We present measurements of NO, NOy, O3, and N2O within the lowermost stratosphere (LMS) over Europe obtained during the SPURT project. The measurements cover each of the four seasons during two years between November 2001 and July 2003, and probe the entire altitude and latitude range of the LMS: from 5° N to 85° N equivalent latitude, and from 290 to 375 K potential temperature. The measurements represent a comprehensive data set of these tracers and reveal atmospheric transport processes that influence tracer distributions in the LMS. Mean mixing ratios of stratospheric tracers in equivalent latitude-potential temperature coordinates show a clear seasonal cycle related to the Brewer-Dobson circulation with highest values in spring and lowest values in autumn. Vertical profiles show strong gradients at the extratropical tropopause suggesting that vertical (cross-isentropic) mixing is reduced above the tropopause. Mixing along isentropes is also strongly reduced since pronounced meridional gradients are found on potential temperature surfaces in the LMS. Concurrent large gradients in PV in the vertical and in the meridional direction horizontally suggest the presence of a transport and mixing barrier. Well above the tropopause distinguished seasonal cycles were found in the correlation slopes ΔO3/ΔN2O and ΔNOy/ΔN2O. Smallest slopes found during spring indicate chemically aged stratospheric air originating from high altitudes and latitudes. The slopes are larger in summer and autumn suggesting that a substantial fraction of air takes a 'short-cut' from the tropical tropopause region into the extratropical LMS. The comparison of measured NO with critical NO values at which net ozone production changes from negative to positive implies a net ozone production up to 20 K above the local tropopause in winter, increasing during spring and summer to up to 50 K in autumn. Above this height NO values favor ozone destruction.


2008 ◽  
Vol 8 (1) ◽  
pp. 2085-2127
Author(s):  
K. Zhang ◽  
H. Wan ◽  
M. Zhang ◽  
B. Wang

Abstract. The radioactive species radon (222Rn) has long been used as a test tracer for the numerical simulation of large scale transport processes. In this study, radon transport experiments are carried out using an atmospheric GCM with a finite-difference dynamical core, the van Leer type FFSL advection algorithm and two state-of-the-art cumulus convection parameterization schemes. Measurements of surface concentration and vertical distribution of radon collected from literature are used as references in model evaluation. The simulated radon concentrations using both convection schemes turn out to be consistent with earlier studies with many other models. Comparison with measurements indicates that at the locations where significant seasonal variations are observed in reality, the model can reproduce both the monthly mean surface radon concentration and the annual cycle quite well. At those sites where the seasonal variation is not large, the model is able to give a correct magnitude of the annual mean. In East Asia, where radon simulations are rarely reported in literature, detailed analysis shows that our results compare reasonably well with the observations. The most evident changes caused by the use of a different convection scheme are found in the vertical distribution of the tracer. The scheme associated with a weaker upward transport gives higher radon concentration up to about 6 km above the surface, and lower values in higher altitudes. In the lower part of the atmosphere results from this scheme does not agree as well with the measurements as the other scheme. Differences from 6 km to the model top are even larger, although we are not yet able to tell which simulation is better due to the lack of observations at such high altitudes.


Sign in / Sign up

Export Citation Format

Share Document