Seasonal variation in mesospheric semi-diurnal tides. Comparison of meteor radar observations and results from an excitation source model

1981 ◽  
Vol 43 (2) ◽  
pp. 101-109 ◽  
Author(s):  
R. Bernard
2006 ◽  
Vol 24 (11) ◽  
pp. 2877-2889 ◽  
Author(s):  
V. Deepa ◽  
G. Ramkumar ◽  
M. Antonita ◽  
K. K. Kumar ◽  
M. N. Sasi

Abstract. Tidal activity in the Mesospheric Lower Thermosphere (MLT) region over Trivandrum (8.5° N, 77° E) is investigated using the observations from newly installed SKiYMET Meteor Radar. The seasonal variability and vertical propagation characteristics of atmospheric tides in the MLT region are addressed in the present communication. The observations revealed that the diurnal tide is more prominent than the semi/terdiurnal components over this latitude. It is also observed that the amplitudes of meridional components are stronger than that of zonal ones. The amplitude and phase structure shows the vertical propagation of diurnal tides with vertical wavelength of ~25 km. However, the vertical wavelength of the semidiurnal tide showed considerable variations. The vertical propagation characteristics of the terdiurnal tide showed some indications of their generating mechanisms. The observed features of tidal components are compared with Global Scale Wave Model (GSWM02) values and they showed a similar amplitude and phase structure for diurnal tides. Month-to-month variations in the tidal amplitudes have shown significant seasonal variation. The observed seasonal variation is discussed in light of the variation in tidal forcing and dissipation.


1999 ◽  
Vol 51 (7-8) ◽  
pp. 579-592 ◽  
Author(s):  
Toshitaka Tsuda ◽  
Kazunori Ohnishi ◽  
Fusako Isoda ◽  
Takuji Nakamura ◽  
Robert A. Vincent ◽  
...  

2021 ◽  
Author(s):  
Gunter Stober ◽  
Ales Kuchar ◽  
Dimitry Pokhotelov ◽  
Huixin Liu ◽  
Han-Li Liu ◽  
...  

Abstract. Long-term and continuous observations of mesospheric/lower thermospheric winds are rare, but they are important to investigate climatological changes at these altitudes on time scales of several years, covering a solar cycle and longer. Such long time series are a natural heritage of the mesosphere/lower thermosphere climate, and they are valuable to compare climate models or long term runs of general circulation models (GCMs). Here we present a climatological comparison of wind observations from six meteor radars at two conjugate latitudes to validate the corresponding mean winds and atmospheric diurnal and semidiurnal tides from three GCMs, namely Ground-to-Topside Model of Atmosphere and Ionosphere for Aeronomy (GAIA), Whole Atmosphere Community Climate Model Extension (Specified Dynamics) (WACCM-X(SD)) and Upper Atmosphere ICOsahedral Non-hydrostatic (UA-ICON) model. Our results indicate that there are interhemispheric differences in the seasonal characteristics of the diurnal and semidiurnal tide. There also are some differences in the mean wind climatologies of the models and the observations. Our results indicate that GAIA shows a reasonable agreement with the meteor radar observations during the winter season, whereas WACCM-X(SD) shows a better agreement with the radars for the hemispheric zonal summer wind reversal, which is more consistent with the meteor radar observations. The free running UA-ICON tends to show similar winds and tides compared to WACCM-X(SD).


2013 ◽  
Vol 13 (2) ◽  
pp. 4785-4837 ◽  
Author(s):  
R. N. Davis ◽  
J. Du ◽  
A. K. Smith ◽  
W. E. Ward ◽  
N. J. Mitchell

Abstract. Horizontal winds in the mesosphere have been measured over Ascension Island (8° S, 14° W) in the tropical mid-Atlantic region throughout the years 2002–2011. The observations were made by a VHF meteor radar. The results reveal the presence of atmospheric tides of large amplitude. The results are analysed to characterise the seasonal and interannual variability of the diurnal and semidiurnal tides. Monthly-mean diurnal tidal amplitudes are found to reach values as large as 48 m s−1 in the meridional component and 41 m s−1 in the zonal. A semiannual seasonal variation is found in diurnal-tidal amplitudes with amplitude maxima at the equinoxes and amplitude minima at the solstices. Diurnal tidal meridional vertical wavelengths are generally in the range 24–30 km. The diurnal zonal vertical wavelengths are similar to the meridional, except for the winter months when the zonal vertical wavelengths are much longer, occasionally exceeding 100 km. Semidiurnal amplitudes are observed to be significantly smaller than diurnal amplitudes. Semidiurnal vertical wavelengths range from 20 to more than 100 km. Our observations of tidal amplitudes and phases are compared with the predictions of the extended Canadian Middle Atmosphere Model (eCMAM) and the Whole Atmosphere Community Climate Model (WACCM). Both eCMAM and WACCM reproduce the trend for greater diurnal amplitudes in the meridional component than the zonal. However, in winter eCMAM tends to over-estimate meridional amplitudes, while WACCM under-estimates zonal and meridional amplitudes. Semidiurnal amplitude predictions are generally good for both models. Vertical wavelength predictions are also generally good for both models, however eCMAM predicts shorter zonal vertical wavelengths than observed for the diurnal tide in winter, while WACCM predicts longer zonal semidiurnal vertical wavelengths than observed for most months. It is found that larger-than-average diurnal and semidiurnal tidal amplitudes occur when the stratospheric QBO at 10 hPa is eastwards, and smaller-than-average amplitudes occur when it is westwards. However, the precise mechanism for this modulation of tidal amplitudes by the stratospheric QBO remains unclear.


2019 ◽  
Vol 64 (10) ◽  
pp. 1940-1947 ◽  
Author(s):  
S. Eswaraiah ◽  
M. Venkat Ratnam ◽  
Yong Ha Kim ◽  
Kondapalli Niranjan Kumar ◽  
G. Venkata Chalapathi ◽  
...  

2018 ◽  
Author(s):  
Gunter Stober ◽  
Jorge L. Chau ◽  
Juha Vierinen ◽  
Christoph Jacobi ◽  
Sven Wilhelm

Sign in / Sign up

Export Citation Format

Share Document