Quantitative calculations of temporomandibular joint reaction forces—I. The importance of the magnitude of the jaw muscle forces

1985 ◽  
Vol 18 (6) ◽  
pp. 445-452 ◽  
Author(s):  
Gaylord S Throckmorton ◽  
Linda S Throckmorton
1999 ◽  
Vol 121 (3) ◽  
pp. 316-322 ◽  
Author(s):  
G. Li ◽  
K. R. Kaufman ◽  
E. Y. S. Chao ◽  
H. E. Rubash

This paper examined the feasibility of using different optimization criteria in inverse dynamic optimization to predict antagonistic muscle forces and joint reaction forces during isokinetic flexion/extension and isometric extension exercises of the knee. Both quadriceps and hamstrings muscle groups were included in this study. The knee joint motion included flexion/extension, varus/valgus, and internal/external rotations. Four linear, nonlinear, and physiological optimization criteria were utilized in the optimization procedure. All optimization criteria adopted in this paper were shown to be able to predict antagonistic muscle contraction during flexion and extension of the knee. The predicted muscle forces were compared in temporal patterns with EMG activities (averaged data measured from five subjects). Joint reaction forces were predicted to be similar using all optimization criteria. In comparison with previous studies, these results suggested that the kinematic information involved in the inverse dynamic optimization plays an important role in prediction of the recruitment of antagonistic muscles rather than the selection of a particular optimization criterion. Therefore, it might be concluded that a properly formulated inverse dynamic optimization procedure should describe the knee joint rotation in three orthogonal planes.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Michael J. Koehle ◽  
M. L. Hull

The usefulness of forward dynamic simulations to studies of human motion is well known. Although the musculoskeletal models used in these studies are generic, the modeling of specific components, such as the knee joint, may vary. Our two objectives were (1) to investigate the effects of three commonly used knee models on forward dynamic simulation results, and (2) to study the sensitivity of simulation results to variations in kinematics for the most commonly used knee model. To satisfy the first objective, three different tibiofemoral models were incorporated into an existing forward dynamic simulation of recumbent pedaling, and the resulting kinematics, pedal forces, muscle forces, and joint reaction forces were compared. Two of these models replicated the rolling and sliding motion of the tibia on the femur, while the third was a simple pin joint. To satisfy the second objective, variations in the most widely used of the three knee models were created by adjusting the experimental data used in the development of this model. These variations were incorporated into the pedaling simulation, and the resulting data were compared with the unaltered model. Differences between the two rolling-sliding models were smaller than differences between the pin-joint model and the rolling-sliding models. Joint reactions forces, particularly at the knee, were highly sensitive to changes in knee joint model kinematics, as high as 61% root mean squared difference, normalized by the corresponding peak force of the unaltered reference model. Muscle forces were also sensitive, as high as 30% root mean squared difference. Muscle excitations were less sensitive. The observed changes in muscle force and joint reaction forces were caused primarily by changes in the moment arms and musculotendon lengths of the quadriceps. Although some level of inaccuracy in the knee model may be acceptable for calculations of muscle excitation timing, a representative model of knee kinematics is necessary for accurate calculation of muscle and joint reaction forces.


Author(s):  
Michael D. Harris ◽  
Ryan S. Davis ◽  
Bruce A. MacWilliams ◽  
Christopher L. Peters ◽  
Andrew E. Anderson

Anatomical pathologies of the hip, such as developmental dysplasia are a common cause of hip pain in the young adult. While it is generally accepted that cartilaginous lesions and tears to the acetabular labrum initiate pain, muscle compensation/weakness may also contribute, especially for patients who do not have evidence of soft-tissue damage. Musculoskeletal models provide estimates of muscle forces as well as the equivalent force that acts upon the joint. Force data can then be compared to any observed differences in joint kinematics, thereby improving the interpretability of data from traditional gait studies. While a few studies have reported alterations in hip joint kinematics due to acetabular dysplasia, to our knowledge, muscle force differences have not been estimated [1, 2]. The purpose of this study was to couple traditional gait analysis with musculoskeletal modeling to compare hip joint kinematics, muscle forces, and joint reaction forces between subjects with acetabular dysplasia and normal controls.


Author(s):  
Dong Sun ◽  
Gusztáv Fekete ◽  
Julien S. Baker ◽  
Qichang Mei ◽  
Bíró István ◽  
...  

The purpose of this study was to compare the inter-limb joint kinematics, joint moments, muscle forces, and joint reaction forces in patients after an Achilles tendon rupture (ATR) via subject-specific musculoskeletal modeling. Six patients recovering from a surgically repaired unilateral ATR were included in this study. The bilateral Achilles tendon (AT) lengths were evaluated using ultrasound imaging. The three-dimensional marker trajectories, ground reaction forces, and surface electromyography (sEMG) were collected on both sides during self-selected speed during walking, jogging and running. Subject-specific musculoskeletal models were developed to compute joint kinematics, joint moments, muscle forces and joint reaction forces. AT lengths were significantly longer in the involved side. The side-to-side triceps surae muscle strength deficits were combined with decreased plantarflexion angles and moments in the injured leg during walking, jogging and running. However, the increased knee extensor femur muscle forces were associated with greater knee extension degrees and moments in the involved limb during all tasks. Greater knee joint moments and joint reaction forces versus decreased ankle joint moments and joint reaction forces in the involved side indicate elevated knee joint loads compared with reduced ankle joint loads that are present during normal activities after an ATR. In the frontal plane, increased subtalar eversion angles and eversion moments in the involved side were demonstrated only during jogging and running, which were regarded as an indicator for greater medial knee joint loading. It seems after an ATR, the elongated AT accompanied by decreased plantarflexion degrees and calf muscle strength deficits indicates ankle joint function impairment in the injured leg. In addition, increased knee extensor muscle strength and knee joint loads may be a possible compensatory mechanism for decreased ankle function. These data suggest patients after an ATR may suffer from increased knee overuse injury risk.


Sign in / Sign up

Export Citation Format

Share Document