Musculoskeletal Modeling of Acetabular Dysplasia-Kinematics, Muscle and Joint Reaction Forces

Author(s):  
Michael D. Harris ◽  
Ryan S. Davis ◽  
Bruce A. MacWilliams ◽  
Christopher L. Peters ◽  
Andrew E. Anderson

Anatomical pathologies of the hip, such as developmental dysplasia are a common cause of hip pain in the young adult. While it is generally accepted that cartilaginous lesions and tears to the acetabular labrum initiate pain, muscle compensation/weakness may also contribute, especially for patients who do not have evidence of soft-tissue damage. Musculoskeletal models provide estimates of muscle forces as well as the equivalent force that acts upon the joint. Force data can then be compared to any observed differences in joint kinematics, thereby improving the interpretability of data from traditional gait studies. While a few studies have reported alterations in hip joint kinematics due to acetabular dysplasia, to our knowledge, muscle force differences have not been estimated [1, 2]. The purpose of this study was to couple traditional gait analysis with musculoskeletal modeling to compare hip joint kinematics, muscle forces, and joint reaction forces between subjects with acetabular dysplasia and normal controls.

1999 ◽  
Vol 121 (3) ◽  
pp. 316-322 ◽  
Author(s):  
G. Li ◽  
K. R. Kaufman ◽  
E. Y. S. Chao ◽  
H. E. Rubash

This paper examined the feasibility of using different optimization criteria in inverse dynamic optimization to predict antagonistic muscle forces and joint reaction forces during isokinetic flexion/extension and isometric extension exercises of the knee. Both quadriceps and hamstrings muscle groups were included in this study. The knee joint motion included flexion/extension, varus/valgus, and internal/external rotations. Four linear, nonlinear, and physiological optimization criteria were utilized in the optimization procedure. All optimization criteria adopted in this paper were shown to be able to predict antagonistic muscle contraction during flexion and extension of the knee. The predicted muscle forces were compared in temporal patterns with EMG activities (averaged data measured from five subjects). Joint reaction forces were predicted to be similar using all optimization criteria. In comparison with previous studies, these results suggested that the kinematic information involved in the inverse dynamic optimization plays an important role in prediction of the recruitment of antagonistic muscles rather than the selection of a particular optimization criterion. Therefore, it might be concluded that a properly formulated inverse dynamic optimization procedure should describe the knee joint rotation in three orthogonal planes.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Joshua T. Weinhandl ◽  
Bobbie S. Irmischer ◽  
Zachary A. Sievert

Alterations in hip joint loading have been associated with diseases such as arthritis and osteoporosis. Understanding the relationship between gait speed and hip joint loading in healthy hips may illuminate changes in gait mechanics as walking speed deviates from preferred. The purpose of this study was to quantify hip joint loading during the gait cycle and identify differences with varying speed using musculoskeletal modeling. Ten, healthy, physically active individuals performed walking trials at their preferred speed, 10% faster, and 10% slower. Kinematic, kinetic, and electromyographic data were collected and used to estimate hip joint force via a musculoskeletal model. Vertical ground reaction forces, hip joint force planar components, and the resultant hip joint force were compared between speeds. There were significant increases in vertical ground reaction forces and hip joint forces as walking speed increased. Furthermore, the musculoskeletal modeling approach employed yielded hip joint forces that were comparable to previous simulation studies and in vivo measurements and was able to detect changes in hip loading due to small deviations in gait speed. Applying this approach to pathological and aging populations could identify specific areas within the gait cycle where force discrepancies may occur which could help focus management of care.


2008 ◽  
Author(s):  
Thomas R. Gardner ◽  
Katerina Fishman ◽  
Alaina Johns ◽  
Evan K. Johnson

2001 ◽  
Vol 17 (2) ◽  
pp. 142-152 ◽  
Author(s):  
Jeremy J. Bauer ◽  
Robyn K. Fuchs ◽  
Gerald A. Smith ◽  
Christine M. Snow

Drop landings increase hip bone mass in children. However, force characteristics from these landings have not been studied. We evaluated ground and hip joint reaction forces, average loading rates, and changes across multiple trials from drop landings associated with osteogenesis in children. Thirteen prepubescent children who had previously participated in a bone loading program volunteered for testing. They performed 100 drop landings onto a force plate. Ground reaction forces (GRF) and two-dimensional kinematic data were recorded. Hip joint reaction forces were calculated using inverse dynamics. Maximum GRF were 8.5 ± 2.2 body weight (BW). At initial contact, GRF were 5.6 ± 1.4 BW while hip joint reactions were 4.7 ± 1.4 BW. Average loading rates for GRF were 472 ± 168 BW/s. Ground reaction forces did not change significantly across trials for the group. However, 5 individuals showed changes in max GRF across trials. Our data indicate that GRF are attenuated 19% to the hip at the first impact peak and 49% at the second impact peak. Given the skeletal response from the drop landing protocol and our analysis of the associated force magnitudes and average loading rates, we now have a data point on the response surface for future study of various combinations of force, rate, and number of load repetitions for increasing bone in children.


Author(s):  
Kinjal Prajapati ◽  
Fred Barez ◽  
James Kao ◽  
David Wagner

Jumping is a natural exertion that occurs during a variety of human activities including playing sports, working, skateboarding, dancing, escaping from hazardous events, rescue activities, and many others. During jumping, the ankles in particular are expected to support the entire body weight of the jumper and that may lead to ankle injuries. Each year hundreds of patients are treated for ankle sprains/strains with ankle fractures as one of the most common injuries treated by orthopedists and podiatrists. The knee joint is also considered the most-often injured joint in the entire human body. Although the general anatomy of the lower extremities is fairly well understood, an understanding of the injury mechanism during these jumping tasks is not well understood. The aim of this study is to determine the reaction forces exerted on legs and joints due to vertical jumps, through musculoskeletal simulation and experimental studies to better understand the dynamic jump process and the injury mechanism. The joint reaction forces and moments exerted on the ankle, knee and hip joint during takeoff and extreme squat landing of a vertical jump were determined through the application of musculoskeletal simulation. It is concluded that during extreme squat landing of a vertical jump, joint reaction forces and moments were highest in proximal/distal and anteroposterior direction may cause most likely injury to the hip joint ligaments, ankle fracture and knee joint, respectively.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Michael J. Koehle ◽  
M. L. Hull

The usefulness of forward dynamic simulations to studies of human motion is well known. Although the musculoskeletal models used in these studies are generic, the modeling of specific components, such as the knee joint, may vary. Our two objectives were (1) to investigate the effects of three commonly used knee models on forward dynamic simulation results, and (2) to study the sensitivity of simulation results to variations in kinematics for the most commonly used knee model. To satisfy the first objective, three different tibiofemoral models were incorporated into an existing forward dynamic simulation of recumbent pedaling, and the resulting kinematics, pedal forces, muscle forces, and joint reaction forces were compared. Two of these models replicated the rolling and sliding motion of the tibia on the femur, while the third was a simple pin joint. To satisfy the second objective, variations in the most widely used of the three knee models were created by adjusting the experimental data used in the development of this model. These variations were incorporated into the pedaling simulation, and the resulting data were compared with the unaltered model. Differences between the two rolling-sliding models were smaller than differences between the pin-joint model and the rolling-sliding models. Joint reactions forces, particularly at the knee, were highly sensitive to changes in knee joint model kinematics, as high as 61% root mean squared difference, normalized by the corresponding peak force of the unaltered reference model. Muscle forces were also sensitive, as high as 30% root mean squared difference. Muscle excitations were less sensitive. The observed changes in muscle force and joint reaction forces were caused primarily by changes in the moment arms and musculotendon lengths of the quadriceps. Although some level of inaccuracy in the knee model may be acceptable for calculations of muscle excitation timing, a representative model of knee kinematics is necessary for accurate calculation of muscle and joint reaction forces.


Sign in / Sign up

Export Citation Format

Share Document