The thermodynamic properties of elementary phosphorus The heat capacities of two crystalline modifications of red phosphorus, of α and β white phosphorus, and of black phosphorus from 15 to 300 K

1969 ◽  
Vol 1 (1) ◽  
pp. 59-76 ◽  
Author(s):  
C.C. Stephenson ◽  
R.L. Potter ◽  
T.G. Maple ◽  
J.C. Morrow
2019 ◽  
Vol 55 (47) ◽  
pp. 6751-6754 ◽  
Author(s):  
Yang Li ◽  
Song Jiang ◽  
Yong Qian ◽  
Ying Han ◽  
Jie Zhou ◽  
...  

A novel approach of phase transition via amines-induced is designed to obtain red phosphorus and black phosphorus.


1987 ◽  
Vol 65 (5) ◽  
pp. 990-995 ◽  
Author(s):  
Gérald Perron ◽  
Josée Francoeur ◽  
Jacques E. Desnoyers ◽  
Jan C. T. Kwak

The apparent molar volumes and heat capacities of aqueous mixtures of neutral polymers and ionic surfactants were measured at 25 °C. The polymers chosen were poly(vinylpyrrolidone) (PVP) and poly(ethyleneoxide) (PEO) and the surfactants were the C8, C10, and C12 homologs of sodium alkylsulfates and the C10, C12, and C16 homologs of alkyltrimethylammonium bromides. The polymer–surfactant interactions depend on the nature of both components and on the chain length of the surfactant. The thermodynamic properties of the cationic surfactants are essentially the same in the absence and presence of polymer indicating little surfactant–polymer interaction. On the other hand, the thermodynamic properties of anionic surfactants are shifted, upon the addition of polymers, in the direction of enhanced hydrophobic association. The effect increases with the surfactant chain length and with the polymer concentration. The effect is larger with PVP than with PEO.


2019 ◽  
Vol 60 (12) ◽  
pp. 1-24
Author(s):  
Anton Z. Mindubaev ◽  
◽  
Elena K. Badeeva ◽  
Salima T. Minzanova ◽  
Lubov G. Mironova ◽  
...  

The biological degradation of white phosphorus, which is being studied by our team is without a doubt a phenomenon of scientific novelty and practical significance. In a decade of studying this phenomenon, we have achieved significant results. However, the field of application of white and yellow phosphorus is rather a narrow one, and this imposes a limitation on the applicability of our method for the neutralization of industrial wastes. Accordingly, an interesting and important path of focus is to expand the spectrum of substances neutralized by the microbial cultures studied by our team. It is thus logical to commence such a major study with phosphorus compounds, since fungal cultures were adapted for the biodegradation of substances containing this element. In this regard, it should be pointed out that, white phosphorus cannot be metabolized to phosphate in one stage; metabolites are formed with intermediate oxidation states of phosphorus. Therefore, it can be assumed that microorganisms that neutralize white phosphorus should be capable of biodegradation of a whole spectrum of phosphorus compounds. We tested this hypothesis experimentally. It was uncovered that Aspergillus niger AM1 posseses the ability to use red phosphorus, triamide of phosphoric acid, phosphomolybdic acid, substituted dithiophosphate and organophosphorus matter as sources of phosphorus. In addition, in the present work, we describe attempts made to increase the concentration of white phosphorus in the culture medium to values above 1%. To do this, we added olive oil (a solvent in which white phosphorus is relatively soluble) to the culture medium. It turned out that in the presence of this component, the minimum inhibitory concentration of white phosphorus drops abruptly.


Sign in / Sign up

Export Citation Format

Share Document