Epicardial surface velocity mapping

1992 ◽  
Vol 25 ◽  
pp. 111 ◽  
Author(s):  
Michael D. Herr ◽  
Joseph J. McInerney ◽  
Jerry C. Luck ◽  
Jeffrey D. Orledge ◽  
Gary L. Copenhaver
Geophysics ◽  
2020 ◽  
pp. 1-57
Author(s):  
Daniele Colombo ◽  
Ernesto Sandoval ◽  
Diego Rovetta ◽  
Apostolos Kontakis

Land seismic velocity modeling is a difficult task largely related to the description of the near surface complexities. Full waveform inversion is the method of choice for achieving high-resolution velocity mapping but its application to land seismic data faces difficulties related to complex physics, unknown and spatially varying source signatures, and low signal-to-noise ratio in the data. Large parameter variations occur in the near surface at various scales causing severe kinematic and dynamic distortions of the recorded wavefield. Some of the parameters can be incorporated in the inversion model while others, due to sub-resolution dimensions or unmodeled physics, need to be corrected through data preconditioning; a topic not well described for land data full waveform inversion applications. We have developed novel algorithms and workflows for surface-consistent data preconditioning utilizing the transmitted portion of the wavefield, signal-to-noise enhancement by generation of CMP-based virtual super shot gathers, and robust 1.5D Laplace-Fourier full waveform inversion. Our surface-consistent scheme solves residual kinematic corrections and amplitude anomalies via scalar compensation or deconvolution of the near surface response. Signal-to-noise enhancement is obtained through the statistical evaluation of volumetric prestack responses at the CMP position, or virtual super (shot) gathers. These are inverted via a novel 1.5D acoustic Laplace-Fourier full waveform inversion scheme using the Helmholtz wave equation and Hankel domain forward modeling. Inversion is performed with nonlinear conjugate gradients. The method is applied to a complex structure-controlled wadi area exhibiting faults, dissolution, collapse, and subsidence where the high resolution FWI velocity modeling helps clarifying the geological interpretation. The developed algorithms and automated workflows provide an effective solution for massive full waveform inversion of land seismic data that can be embedded in typical near surface velocity analysis procedures.


1997 ◽  
Vol 20 (6) ◽  
pp. 1619-1627 ◽  
Author(s):  
JOSEPH J. MCINERNEY ◽  
MICHAEL D. HERR ◽  
JERRY C. LUCK ◽  
JEFFREY D. ORLEDGE

Author(s):  
X. Li ◽  
R. Li ◽  
G. Qiao ◽  
Y. Cheng ◽  
W. Ye ◽  
...  

Ice flow velocity over long time series in East Antarctica plays a vital role in estimating and predicting the mass balance of Antarctic Ice Sheet and its contribution to global sea level rise. However, there is no Antarctic ice velocity product with large space scale available showing the East Antarctic ice flow velocity pattern before the 1990s. We proposed three methods including parallax decomposition, grid-based NCC image matching, feature and gird-based image matching with constraints for estimation of surface velocity in East Antarctica based on ARGON KH-5 and LANDSAT imagery, showing the feasibility of using historical optical imagery to obtain Antarctic ice motion. Based on these previous studies, we presented a set of systematic method for developing ice surface velocity product for the entire East Antarctica from the 1960s to the 1980s in this paper.


Author(s):  
Y. Cheng ◽  
X. Li ◽  
G. Qiao ◽  
W. Ye ◽  
Y. Huang ◽  
...  

<p><strong>Abstract.</strong> Long-time serial observation of surface ice flow velocity in Antarctic is a crucial component in estimating the mass balance of Antarctic ice sheet. However, there is a lack of historical continental scale velocity maps of Antarctica before the 1990s. Historical optical images such as ARGON and Landsat images before 1990s are difficult to be used for ice flow velocity mapping, due to the fact that they are mostly not strictly geo-processed (e.g., ortho-rectified) and the image quality is lower than those of recent sensors. This paper presents a systematic framework for developing a surface velocity map of East Antarctica from 1963 to 1989 based on historical ARGON and Landsat images, followed by analysis of spatial-temporal changes of the ice flow velocity in some major glaciers, as well as the dynamic changes. The preliminary comparison with existing products suggests that the glaciers in Wilkes Land experienced an increasing trend with obvious fluctuations during the past &amp;sim;50 years, while the glaciers near Transantarctic Mountains tended to be stable or slightly fluctuating to a certain degree.</p>


1994 ◽  
Vol 17 (5) ◽  
pp. 901-907 ◽  
Author(s):  
MICHAEL D. HERR ◽  
JERRY C. LUCK ◽  
JEFFREY D. ORLEDGE ◽  
GARY L. COPENHAVER ◽  
JOSEPH J. McINERNEY

Author(s):  
Sterling McBride ◽  
Ricardo Burdisso ◽  
Corina Sandu

ABSTRACT Tire-pavement interaction noise (TPIN) is one of the main sources of exterior noise produced by vehicles traveling at greater than 50 kph. The dominant frequency content is typically within 500–1500 Hz. Structural tire vibrations are among the principal TPIN mechanisms. In this work, the structure of the tire is modeled and a new wave propagation solution to find its response is proposed. Multiple physical effects are accounted for in the formulation. In an effort to analyze the effects of curvature, a flat plate and a cylindrical shell model are presented. Orthotropic and nonuniform structural properties along the tire's transversal direction are included to account for differences between its sidewalls and belt. Finally, the effects of rotation and inflation pressure are also included in the formulation. Modeled frequency response functions are analyzed and validated. In addition, a new frequency-domain formulation is presented for the computation of input tread pattern contact forces. Finally, the rolling tire's normal surface velocity response is coupled with a boundary element model to demonstrate the radiated noise at the leading and trailing edge locations. These results are then compared with experimental data measured with an on-board sound intensity system.


Sign in / Sign up

Export Citation Format

Share Document